用户名: 密码: 验证码:
多种介质修复磷石膏堆场渗滤液污染岩溶地下水
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Remediation of Karst Groundwater by Percolation of Phosphogypsum Yard with Various Media
  • 作者:蔡保德 ; 李金娟 ; 郭兴强 ; 李娟 ; 张政
  • 英文作者:CAI Baode;LI Jinjuan;GUO Xingqiang;LI Juan;ZHANG Zheng;College of Resources and Environmental Engineering,Guizhou University;
  • 关键词:反应介质 ; 磷石膏渗滤液 ; 岩溶地下水 ; 地下水污染 ; 喀斯特地区
  • 英文关键词:reaction mediums;;phosphogypsum leachate;;karst groundwater;;groundwater pollution;;karst region
  • 中文刊名:GZDI
  • 英文刊名:Journal of Guizhou University(Natural Sciences)
  • 机构:贵州大学资源与环境工程学院;
  • 出版日期:2019-04-28 07:01
  • 出版单位:贵州大学学报(自然科学版)
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金委员会-贵州省人民政府喀斯特科学研究中心项目资助(U1612442);; 贵州省重点学科建设项目资助(黔学位合字ZDXK[2016]11号)
  • 语种:中文;
  • 页:GZDI201902023
  • 页数:7
  • CN:02
  • ISSN:52-5002/N
  • 分类号:123-129
摘要
磷石膏堆场渗滤液对岩溶地下水的污染是亟待解决的重要问题。利用石灰石、沸石、膨润土、钢渣四种介质对磷石膏堆场渗滤液污染的岩溶地下水进行处理,分析了不同介质与粒径条件下的处理效果,并筛选出高效、无二次污染的处理介质及最佳粒径。结果表明,添加Ca(OH)_2调高pH有利于岩溶地下水中PO_4~(3-)、F~-、SO_4~(2-)、Mg、Fe、Mn的去除,Fe、Mn、Mg浓度均低于检测限;石灰石、沸石、膨润土、钢渣对PO_4~(3-)的去除率均在98.0%以上,对F-平均去除率分别为93.3%、94. 1%、88.8%、89.1%,对SO_4~(2-)平均去除率分别为74.1%、70.7%、73.3%、79.6%,选用石灰石、膨润土、沸石作为反应介质。通过粒径筛选实验,150目膨润土、3~16目石灰石、16~32目沸石处理后的岩溶地下水中Fe、Mn、Mg浓度均低于检测限,PO_4~(3-)、F~-、SO_4~(2-)去除率分别为99.3%、91.6%、73.1%,99.7%、87.1%、84.0%,99.3%、87.5%、65.8%。通过实验初步确定选用150目膨润土、3~16目石灰石、16~32目沸石作为处理介质。研究结果可为磷石膏堆场渗滤液污染的岩溶地下水修复提供重要的基础数据。
        Contamination of leachate from phosphogypsum dump to karst groundwater is an important problem to be solved urgently. Limestone,zeolite,bentonite and steel slag were used to treat the karst groundwater contaminated by the leachate in this study,and the treatment effects under different mediums and particle sizes were analyzed,by which efficient mediums without secondary pollution and optimum particle sizes were selected. The results show that lime added to adjust p H is favorable to removal of PO_4~(3-),F-,SO_4~(2-),Mg,Fe and Mn from karst groundwater. After processing,the concentrations of Fe,Mn and Mg were,in turn,were lower than the detection limits. The removal rates of PO_4~(3-) by limestone,zeolite,bentonite and steel slag were all over 98.0%,the average removal rates of F-were 96.3%,96.7%,93.8% and 93.9% respectively,and those of SO_4~(2-) were 74.1%,70.7%and 73. 3% separately. Therefore,limestone,bentonite and zeolite were selected as reaction mediums. Then,through the medium particle size screening experiment,the optimum particle size combination was determined as150 mesh bentonite,3 ~ 16 mesh limestone and 16 ~ 32 mesh zeolite. The results show that the removal rates of PO_4~(3-) by them were 99.3%,89.6% and 73.1%,those of F-were 99.7%,85.8% and 84.0%,and those of SO_4~(2-) were 99.3%,88.1% and 65.8%. After processing,the concentrations of Fe,Mn and Mg were all lower than the detection limits. The experimental results can provide important basic data for the remediation of karst groundwater contaminated by leachate in phosphogypsum dump.
引文
[1]韩青,罗康碧,李沪萍,等.磷石膏开发利用现状[J].化工科技,2012,20(01):53-58.
    [2]张茹,李艳军,刘杰,等.磷石膏的综合利用及有害元素处理方法[J].矿产保护与利用,2015,(02):50-54.
    [3]查学芳,覃应机,吴攀,等.磷石膏堆场渗滤影响下岩溶地下水地球化学过程[J].生态学杂志,2018,37(06):1708-1715.
    [4]仲星颖,杨建华,董毓,等.某磷石膏堆场岩溶渗漏及乌江污染影响分析[J].地下水,2012,34(01):91-93.
    [5]黄绪泉,赵小蓉,唐次来,等.磷石膏基胶结材固结磷尾矿性能及浸出特征[J].环境工程学报,2016,10(10):5957-5963.
    [6]张科正,陈舟,陈长生,等.岩溶区磷石膏堆场地下水渗流与污染物运移数值模拟[J].中国煤炭地质,2018,30(05):46-52.
    [7]O’BRIEN L O,SUMNER M E. Effects of phosphogypsum on leachate and soil chemical composition[J]. Communications in Soil Science and Plant Analysis,1988,19(7-12):1319-1329.
    [8]段先前,韦俊发,丁坚平.贵州某磷石膏堆场渗漏污染评价[J].资源环境与工程,2008,22(02):218-221.
    [9]GUERIN T F,HORNER S,MCGVERN T,et al. An application of permeable reactive barrier technology to petroleum hydrocarbon contaminated groundwater[J]. Water Research,2002,36(01):15-24.
    [10]HENTATI O,ABRANTES N,CAETANO AL,et al. Phosphogypsum as a soil fertilizer:Ecotoxicity of amended soil and elutriates to bacteria,invertebrates,algae and plants[J]. Journal of hazardous materials,2015,294(30):80-89.
    [11]JACKSON M E,NAETH M A,CHANASYK D S,et al. Phosphogypsum capping depth affects revegetation and hydrology in Western Canada[J]. Journal of Environmental Quality,2011,40(04):1122-1129.
    [12]董丽君,王雨泽,孙丽欣.天然石灰石活化除氟性能研究[J].哈尔滨工业大学学报,2003,35(05):611-614.
    [13]苏荣梅.高氟地下水除氟研究[D].长春:吉林大学,2007.
    [14]陈天意,陈志和,金树峰,等. p H值对滤池处理高浓度铁、锰及氨氮地下水的影响[J].中国给水排水,2015,31(23):5-9.
    [15]唐朝春,段先月,叶鑫,等.天然沸石对处理地下水中铁锰的吸附性能研究[J].长江科学院院报,2017,34(04):24-27.
    [16]刘瑞,高燕娇. PRB填料的研究进展[J].工业安全与环保,2017,43(06):5-7+72.
    [17]AIELLO R,CLELLA C,NASTRA A. The properties and application of Zeolites[M],The Chemical Society,1980.
    [18]TAN W C,WANG Q Y,WANG Y B,et al. Adsorption of nitrogen and phosphorus on natural zeolite and its influencing factors[C]. Computer Distributed Control and Intelligent Environmental Monitoring,2011.
    [19]柳萍,王建龙.天然沸石在水污染控制中的应用[J].离子交换与吸附,1996,12(04):378-382.
    [20]刑赜,陈玉成,熊佰炼,等.不同沸石材料对沼泽中磷素静态吸附去除[J].环境工程学报,2013,07(02):494-500.
    [21]孙洪良.复合改性膨润土对水中有机物和重金属的协同吸附研究[D].杭州:浙江大学,2010.
    [22]陶征义.可渗透反应墙处理酸性矿山废水实验研究[D].贵阳:贵州大学,2009.
    [23]王惠东,王艳芬,曾云嵘. PRB技术修复地下水污染的研究现状[J].江西化工,2016,(06):24-26.
    [24]张学洪,许立巍,朱义年,等.石灰石和方解石预处理酸性含氟废水的试验研究[J].矿冶工程,2005,25(02):49-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700