用户名: 密码: 验证码:
骨组织工程用可降解多孔含银镁基支架的合成及体外性能(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis and in-vitro characterization of biodegradable porous magnesium-based scaffolds containing silver for bone tissue engineering
  • 作者:Hamid ; Reza ; BAKHSHESHI-RAD ; Ehsan ; DAYAGHI ; Ahmad ; Fauzi ; ISMAIL ; Madzlan ; AZIZ ; Ali ; AKHAVAN-FARID ; Xiongbiao ; CHEN
  • 英文作者:Hamid Reza BAKHSHESHI-RAD;Ehsan DAYAGHI;Ahmad Fauzi ISMAIL;Madzlan AZIZ;Ali AKHAVAN-FARID;Xiongbiao CHEN;Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University;Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia;Department of Mechanical Engineering, College of Engineering, University of Saskatchewan;Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Malaysia Campus;Division of Biomedical Engineering, College of Engineering, University of Saskatchewan;
  • 关键词:镁基支架 ; 生物相容性 ; 抗菌活性 ; 生物活性 ; 腐蚀行为
  • 英文关键词:Mg-based scaffold;;biocompatibility;;antibacterial activities;;bioactivity;;corrosion behavior
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University;Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia;Department of Mechanical Engineering, College of Engineering, University of Saskatchewan;Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Malaysia Campus;Division of Biomedical Engineering, College of Engineering, University of Saskatchewan;
  • 出版日期:2019-05-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2019
  • 期:v.29
  • 基金:partial financial support to this research from the Saskatchewan Health Research Foundation (SHRF)
  • 语种:英文;
  • 页:ZYSY201905009
  • 页数:13
  • CN:05
  • ISSN:43-1239/TG
  • 分类号:97-109
摘要
感染是骨损伤临床治疗中常见的并发症。镁基复合材料是一种可生物降解的抗菌生物材料,已被用于减少术后感染。本文作者合成含银镁基骨组织工程支架材料,并对其进行体外表征。通过造孔剂法制备4种不同银含量(0、0.5、1、和2 wt.%)的多孔镁基支架,用Mg-Ca-Mn-Zn-xAg (MCMZ-xAg)表示,其中x表示银含量。研究银含量对材料的孔隙结构、力学性能、生物活性和抑菌区的影响。采用X射线衍射分析(XRD)、扫描电镜(SEM)、透射电镜(TEM)和荧光显微镜对支架进行表征。体外腐蚀试验结果表明,银含量低的支架比银含量高的支架具有更好的耐腐蚀性。抗菌活性的检测结果表明MCMZ-Ag支架具有显著抑制大肠杆菌和(E.coli)和金黄色葡萄球菌(S.aureus)生长的作用,且随着含银量的增加,MCMZ-Ag支架周围的抑菌区面积逐渐增加。然而,含银量过高会增加材料的细胞毒性。总之,含0.5wt.%Ag的支架因其具有连通的孔隙、足够的力学性能、抗菌活性和细胞黏附性能,在修复与替换受损和患病骨方面具有应用前景。
        Infection is a major potential complication in the clinical treatment of bone injuries. Magnesium(Mg)-based composites are biodegradable and antibacterial biomaterials that have been employed to reduce infection following surgical implants. The aim of present study was to synthesize and in-vitro characterize Mg-based scaffolds containing silver for bone tissue engineering. Porous Mg-based scaffolds with four silver concentrations(i.e., 0, 0.5 wt.%, 1 wt.%, and 2 wt.%), denoted by Mg-Ca-Mn-Zn-x Ag(MCMZ-x Ag)(where x is the silver concentration), were fabricated by the space holder technique. The effects of silver concentration on pore architecture, mechanical properties, bioactivity, and zone of bacterial inhibition were investigated in-vitro. X-ray diffractometry(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM) and fluorescence microscopy were utilized to characterize the obtained scaffolds. In-vitro corrosion test results indicated that the MCMZ scaffolds with lower silver content were more resistant to corrosion than those enriched with higher amounts of silver. Examination of the antibacterial activity showed that the MCMZ-Ag scaffolds exhibited superb potential with respect to suppressing the growth of Escherichia coli(E. coli) and Staphylococcus aureus(S. aureus), in the inhibition zone around the MCMZ-Ag scaffolds, with increasing in the amount of incorporated silver; however, higher amounts of silver increased the cytotoxicity. Taken together, the results of this study demonstrate that the porous 0.5 wt.% Ag-containing scaffolds with interconnected pores, adequate mechanical properties, antibacterial activity, and cell adhesion are promising with respect to the repair and substitution of damaged and diseased bones.
引文
[1]LOPES J H,MAGALH?ES J A,GOUVEIA R F,BERTRAN C A,MOTISUKE M,CAMARGO S E A,TRICHêS E D S.Hierarchical structures ofβ-TCP/45S5 bioglass hybrid scaffolds prepared by gelcasting[J].Journal of the Mechanical Behavior of Biomedical Materials,2016,62:10-23.
    [2]MUTHUTANTRI A I,EDIRISINGHE M J,BOCCACCINI A R.Improvement of the microstructure and mechanical properties of bioceramic scaffolds using electrohydrodynamic spraying with template modification[J].Journal of the Mechanical Behavior of Biomedical Materials,2010,3:230-239.
    [3]DAROONPARVAR M,MAT M A Y,GUPTA R K,YUSOF N M,BAKHSHESHI-RAD H R,GHANDVAR H,GHASEMI E.Antibacterial activities and corrosion behavior of novel PEO/nanostructured ZrO2 coating on Mg alloy[J].Transactions of Nonferrous Metals Society of China,2018,28:1571-1581.
    [4]WITTE F.The history of biodegradable magnesium implants:Areview[J].Acta Biomaterialia.2010,6:1680-1692.
    [5]YAZDIMAMAGHANI M,RAZAVI M,VASHAEE D,MOHARAMZADEH K,BOCCACCINI A R,TAYEBI L.Porous magnesium-based scaffolds for tissue engineering[J].Materials Science and Engineering C,2017,71:1253-1266.
    [6]DIBA M,GOUDOURI O M,TAPIA F,BOCCACCINI A R.Magnesium-containing bioactive polycrystalline silicate-based ceramics and glass-ceramics for biomedical applications[J].Current Opinion in Solid State&Materials Science,2014,18:147-167.
    [7]SANCHEZ A H M,LUTHRINGER B J C,FEYERABEND F,WILLUMEIT R.Mg and Mg alloys:How comparable are in vitro and in vivo corrosion rates?A review[J].Acta Biomaterialia,2015,13:16-31.
    [8]ZHENG Y F,GU X N,WITTE F.Biodegradable metals[J].Materials Science and Engineering R,2014,77:1-34.
    [9]LI N,ZHENG Y.Novel magnesium alloys developed for biomedical application:A review[J].Journal of Materials Science&Technology,2013,29:489-502.
    [10]AGARWAL S,CURTIN J,DUFFY B,JAISWAL S.Biodegradable magnesium alloys for orthopaedic applications:A review on corrosion,biocompatibility and surface modifications[J].Materials Science and Engineering C,2016,68:948-963.
    [11]BALAMURUGAN A,BALOSSIER G,LAURENT-MAQUIN D,PINA S,REBELO A H S,FAURE J,FERREIRA J M F.An in vitro biological and anti-bacterial study on a sol-gel derived silver-incorporated bioglass system[J].Dental Materials,2008,24:1343-1351.
    [12]QIN H,ZHAO Y,AN Z,CHENG M,WANG Q,CHENG T,WANG Q,WANG J,JIANG Y,ZHANG X,YUAN G.Enhanced antibacterial properties,biocompatibility,and corrosion resistance of degradable Mg-Nd-Zn-Zr alloy[J].Biomaterials,2015,53:211-220.
    [13]PARENT M,MAGNAUDEIX A,DELEBASSéE S,SARRE E,CHAMPION E,VIANA T M,DAMIA C.Hydroxyapatite microporous bioceramics as vancomycin reservoir:Antibacterial efficiency and biocompatibility investigation[J].Journal of Biomaterials Applications,2016,31:488-498.
    [14]LIU C,FU X,PAN H,WAN P,WANG L,TAN L,WANG K,ZHAO Y,YANG K,CHU P K.Biodegradable Mg-Cu alloys with enhanced osteogenesis,angiogenesis,and long-lasting antibacterial effects[J].Scientific Reports,2016,6:27374.
    [15]ROBINSON D A,GRIFFITH R W,SHECHTMAN D,EVANS R B,CONZEMIUS M G.In vitro antibacterial properties of magnesium metal against Escherichia coli,Pseudomonas aeruginosa and Staphylococcus aureus[J].Acta Biomaterialia,2010,6:1869-1877.
    [16]BAKHSHESHI-RAD H R,HAMZAH E,LOW H T,KASIRI-ASGARANI M,FARAHANY S,AKBARI E,CHO M H.Fabrication of biodegradable Zn-Al-Mg alloy:Mechanical properties,corrosion behavior,cytotoxicity and antibacterial activities[J].Materials Science and Engineering C,2017,73:215-219.
    [17]TIAN Q H,DENG D,LI Y,GUO X Y.Preparation of ultrafine silver powders with controllable size and morphology[J].Transactions of Nonferrous Metals Society of China,2018,28:524-533.
    [18]CUI L Y,XU J,LU N,ZENG R C,ZOU Y H,LI S Q,ZHANG F.In vitro corrosion resistance and antibacterial properties of layer-by-layer assembled chitosan/poly-L-glutamic acid coating on AZ31 magnesium alloys[J].Transactions of Nonferrous Metals Society of China,2017,27:1081-1086.
    [19]MUTLU I.Production and fluoride treatment of Mg-Ca-Zn-Co alloy foam for tissue engineering applications[J].Transactions of Nonferrous Metals Society of China,2018,28:114-124.
    [20]DIZAJ S M,LOTFIPOUR F,BARZEGAR-JALALI M,ZARRINTAN M H,ADIBKIA K.Antimicrobial activity of the metals and metal oxide nanoparticles[J].Materials Science and Engineering C,2014,44:278-284.
    [21]KUMAR R,UMAR A,KUMAR G,NALWA H S.Antimicrobial properties of Zn O nanomaterials:A review[J].Ceramics International,2017,43:3940-3961.
    [22]BUZOLIN R H,MOHEDANO M,MENDIS C L,MINGO B,TOLNAI D,BLAWERT C,KAINER K U,PINTO H,HORT N.Corrosion behaviour of as-cast ZK40 with CaO and Y additions[J].Transactions of Nonferrous Metals Society of China,2018,28:427-439.
    [23]MOHAMMADI F D,JAFARI H.Microstructure characterization and effect of extrusion temperature on biodegradation behavior of Mg-5Zn-1Y-x Ca alloy[J].Transactions of Nonferrous Metals Society of China,2018,28:2199-2213.
    [24]EL-KADY A M,RIZK R A,ABD EL-HADY B M,SHAFAA M W,AHMED M M.Characterization,and antibacterial properties of novel silver releasing nanocomposite scaffolds fabricated by the gas foaming/salt-leaching technique[J].Journal of Genetic Engineering and Biotechnology,2012,10:229-238.
    [25]ROSETI L,PARISI V,PETRETTA M,CAVALLO C,DESANDO G,BARTOLOTTI I,GRIGOLO B.Scaffolds for bone tissue engineering:State of the art and new perspectives[J].Materials Science and Engineering C,2017,78:1246-1262.
    [26]SEYEDRAOUFI Z S,MIRDAMADI S.In vitro biodegradability and biocompatibility of porous Mg-Zn scaffolds coated with nano hydroxyapatite via pulse electrodeposition[J].Transactions of Nonferrous Metals Society of China,2015,25:4018-4027.
    [27]BAKHSHESHI-RAD H R,HAMZAH E,DAROONPARVAR M,YAJID M A M,ASGARANI M K,KADIR M R A,MEDRAJ M.In-vitro degradation behavior of Mg alloy coated by fluorine doped hydroxyapatite and calcium deficient hydroxyapatite[J].Transactions of Nonferrous Metals Society of China,24,2014:2516-2528.
    [28]YOU F,LI Y,ZOU Q,ZUO Y,LU M,CHEN X,LI J.Fabrication and osteogenesis of a porous nanohydroxyapatite/polyamide scaffold with an anisotropic architecture[J].ACS Biomaterials Science&Engineering,2015,1(9):825-833.
    [29]BEN-HAMU G,ELIEZER D,KAYA A,NA Y G,SHIN K S.Microstructure and corrosion behavior of Mg-Zn-Ag alloys[J].Materials Science and Engineering A,2006,435-436:579-587.
    [30]BAKHSHESHI-RAD H R,IDRIS M H,KADIR M R A,OURDJINIA,MEDRAJ M,DAROONPARVAR M,HAMZAH E.Mechanical and bio-corrosion properties of quaternary Mg-Ca-Mn-Zn alloys compared with binary Mg-Ca alloys[J].Materials&Design,2014,53:283-292.
    [31]ABOUDZADEH N,DEHGHANIAN C,SHOKRGOZAR M A.In vitro degradation and cytotoxicity of Mg-5Zn-0.3Ca/nHAbiocomposites prepared by powder metallurgy[J].Transactions of Nonferrous Metals Society of China,2018,28:1745-1754.
    [32]BAKHSHESHI-RAD H R,HAMZAH E,ISMAIL A F,AZIZ M,KARAMIAN E,IQBAL N.Bioactivity,in-vitro corrosion behavior,and antibacterial activity of silver-zeolites doped hydroxyapatite coating on magnesium alloy[J].Transactions of Nonferrous Metals Society of China,2018,28:1553-1562.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700