用户名: 密码: 验证码:
铁矿周边地下水金属元素分布及健康风险评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distribution and health risk assessment of metals in groundwater around iron mine
  • 作者:周巾枚 ; 蒋忠诚 ; 徐光黎 ; 覃小群 ; 黄奇波 ; 张连凯
  • 英文作者:ZHOU Jin-mei;JIANG Zhong-cheng;XU Guang-li;QIN Xiao-qun;HUANG Qi-bo;ZHANG Lian-kai;Institute of Karst Geology, Chinese Academy of Geological Sciences;Faculty of Engineering, China University of Geosciences;
  • 关键词:铁矿 ; 地下水 ; 金属元素 ; 多元统计 ; 健康风险评价
  • 英文关键词:iron mine;;groundwater;;metals;;multivariate statistical analysis;;health risk assessment
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:中国地质科学院岩溶地质研究所;中国地质大学(武汉)工程学院;
  • 出版日期:2019-05-20
  • 出版单位:中国环境科学
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金资助项目(41571203);; 中国地质科学院基本科研业务费项目(YYWF201725);; 中国地质调查项目(DD20160301)
  • 语种:中文;
  • 页:ZGHJ201905021
  • 页数:11
  • CN:05
  • ISSN:11-2201/X
  • 分类号:144-154
摘要
以崇左市红阳村、两岸村、亭乐村和孔甲村所在地为研究区域,对该区域内某铁矿周边30个地下水样品中12种金属元素(Hg、Mn、Fe、Al、Zn、Ni、As、Pb、Cr、Cd、Co、Cu)进行测定和分析,运用多元统计的方法和健康风险评价模型研究了地下水金属元素的分布特征及其引起的健康风险.结果表明,地下水中Zn和Fe平均浓度(250.32,103.96μg/L)较高,Hg、Mn、Fe、Al和Zn超过了《地下水质量标准》(GB/T14848-2017)规定的Ⅲ类标准限值.Fe、Mn、Al高浓度主要分布在红阳村和亭乐村,Zn、Hg高浓度主要分布在红阳村和两岸村.多元统计分析表明,Fe、Mn、Al、Pb、As、Co元素主要来源于铁矿开采,Cu、Zn、Cr、Ni元素主要与铅锌矿的开采与区域地质背景有关,Hg主要来源于本底值及糖厂和造纸厂等企业污染,Cd主要来源于自然源.健康风险评价表明,两岸村地下水金属元素引起的健康总风险(8.82×10~(-5)a~(-1))最高,儿童健康总风险大于成人,经饮水途径引起的健康风险比皮肤接触途径高2~3个数量级,Cr的致癌风险接近或高于最大可接受风险水平5.0×10~(-5)a~(-1),非致癌风险水平在10~(-14)~10~(-9)a~(-1),低于最大可接受风险水平4~9个数量级.
        Concentration of twelve metals, Hg, Mn, Fe, Al, Zn, Ni, As, Pb, Cr, Cd, Co and Cu from thirty samples collected from groundwater around iron mine in Hongyang, Liangan, Tingle and Kongjia villages in Chongzuo city were measured and analyzed to investigate their distribution characteristics and the human health risks. The distribution characteristics of these elements were analyzed using multivariate statistical analysis method and the health risks caused by metals were assessed using human health risk assessment model. The average concentrations of Zn and Fe((250.32, 103.96μg/L) were higher than others. Concentrations of Hg,Mn, Fe, Al and Zn exceeded the Quality Standards for Groundwater(GB/T 14848-2017). The highest concentrations of Fe, Mn and Al were mainly located in Hongyang and Tingle, the highest concentrations of Zn and Hg were mainly located in Hongyang and Liangan. Multivariate statistical analysis indicated that Fe, Mn, Al, Pb, As and Co mainly originated from iron mining, while Cu, Zn,Cr and Ni were mainly related to the lead-zinc mine and regional geological background. Hg mainly originated from contaminated sugar and paper mills' contamination and Cd mainly originated from natural sources. The results of health risk assessment indicated that the total risks of metals in Liangan is the highest, which were 8.82×10~(-5) a~(-1).Children had greater health risks than adults. The health risks of metals through drinking pathway were 2~3 orders of magnitude higher than the values caused by dermal contact pathway. Carcinogenic risks caused by Cr were higher than the maximum allowance levels(5.0×10~(-5) a~(-1)). The non-carcinogenic risk levels of the metals were 10~(-14)~10~(-9) a~(-1), which were 4~9 orders of magnitude lower than the maximum allowance.
引文
[1]张霄阳,陈定江,朱兵,等.基于MRID对铁矿石开采生态补偿新机制的探讨[J].中国环境科学,2016,36(11):3449-3455.Zhang X Y, Chen D J,Zhu B,et al. A new eco-compensation mechanism for iron ore extraction based on multi-region input-output analysis[J]. China Environmental Science, 2016,36(11):3449-3455.
    [2]洪晨,邢奕,司艳晓,等.铁矿区内重金属对土壤氨氧化微生物群落组成的影响[J].中国环境科学,2014,34(5):1212-1221.Hong C, Xing Y, Si X Y, et al. Impact of long-term heavy metals pollution on ammonia oxidizing microbial community in Zhengjiapo iron mine on groundwater[J]. China Environmental Science, 2014,34(5):1212-1221.
    [3]张建伟,郭秀岩,王锡魁.郑家坡铁矿矿渣堆存对地下水环境影响评价[J].金属矿山,2009,393(3):163-166.Zhang J W, Guo X Y, Wang X K. A assessment of the environment impact of the mine waste disposal in Zhengjiapo iron mine on Groundwater[J]. Metal Mine,2009,393(3):163-166.
    [4]王滢,刘光武.铁矿开采对地下水环境影响评价实证研究[J].地下水,2015,37(2):80-82.Wang Y, Liu G W. Empirical study on groundwater environmental impact assessment of iron ore mining[J]. Groundwater, 2015,37(2):80-82.
    [5] Sun Z G,Mou X J, Tong C, et al. Spatial variations and bioaccumulation of heavy metals in intertidal zone of the Yellow River estuary, China[J]. Catena, 2015,126(3):43-52.
    [6] Muhammad S, Shah M T, Khan S. Health risk assessment of heavy metals and their source apportionment in drinking water of Kavcar P,Sofuoglu A, Soguoglu S C. A health risk assessment for exposure to trace metals via drinking water ingestion pathway[J]. International Journal of Hygiene and Environmental Health, 2009,212(2):216-227.
    [7] Kavcar P, Sofuoglu A, Soguoglu S C. A health risk assessment for exposure to trace metals via drinking water ingestion pathway[J].International Journal of Hygiene and Environmental Health, 2009,212(2):216-227.
    [8]李强,刘云庆,陈望香,等.新疆地表水体重金属生态风险评估[J].中国环境科学,2018,38(5):1913-1922.Li Q, Liu Y Q, Chen W X, et al. Ecological risk assessment of heavy metals in water of Xinjiang Area[J]. China Environmental Science,2018,38(5):1913-1922.
    [9] Wang X L, Li Y. Distribution and fractionation of heavy metals in long-term and short-term contaminated sediments[J]. Environmental Engineering Science,2012,29(7):617-622.
    [10] Giri S, Singh A K. Risk assessment, statistical source identification and seasonal fluctuation of dissolved metals in the Subarnarekha River,India[J]. Journal of Hazardous Materials,2014,265(2):305-314.
    [11] Li S Y,Zhang Q F. Risk assessment and seasonal variations of dissolved trace elements and heavy metals in the Upper Han River,China[J]. Journal of Hazardous Materials, 2010,181(1-3):1051-1058.
    [12]黄楚珊,胡国成,陈棉彪,等.矿区家庭谷物和豆类重金属含量特征及风险评价[J].中国环境科学,2017,37(3):1171-1178.Huang C S, Hu G C, Chen M B, et al. Heavy metal content characteristics and risk assessment of household cereal and beans from mining areas[J]. China Environmental Science, 2017,37(3):1171-1178.
    [13]欧阳林,吴晓芙,李芸,等.锰矿修复区泡桐与栾树生长与重金属积累特性[J].中国环境科学,2016,36(3):908-916.Ou Y L, Wu X F, Li Y, et al. Growth and heavy metal accumulation of Paulownia fortunei and Koelreuteri a bipinnata in an ecological restoration site of the manganese-ore tailing[J]. China Environmental Science, 2016,36(3):908-916.
    [14]李静,俞天明,周洁,等.铅锌矿区及周边土壤铅、锌、镉、铜的污染健康风险评价[J].环境科学,2008,29(8):2327-2330.Li J, Yu T M, Zhou J, et al. Assessment of health risk for mined soils based on critical thresholds for Lead, Zinc, Cadmium and Copper[J].Environmental Science,2008,29(8):2327-2330.
    [15]孙宏飞,李永华,姬艳芳,等.湘西汞矿区土壤中重金属的空间分布特征及其生态环境意义[J].环境科学,2009,30(4):1159-1165.Sun H F, Li Y H, Ji Y F, et al. Spatial Distribution and ecological significance of heavy metals in soils from Chatian Mercury Mining deposit Western Hunan Province[J]. Environmental Science, 2009,30(4):1159-1165.
    [16]李春辉,梁汉,陈洋,等.中国乌达煤炭基地尘土汞分布特征[J].中国环境科学,2017,37(6):2203-2210.Li C H, Liang H, Chen Y, et al. Distribution of mercury content in dusts of coal base, Wuda, China[J]. China Environmental Science,2017,37(6):2203-2210.
    [17]郭伟,赵仁鑫,张君,等.内蒙古包头铁矿区土壤重金属污染特征及其评价[J].环境科学,2011,32(10):3099-3105.Guo W, Zhao R X, Zhang J, et al. Distribution characteristic and assessment of soil heavy metal pollution in the iron mining of Baotou in Inner Mongolia[J]. Environmental Science, 2011,32(10):3099-3105.
    [18]丁彦丽,孟见,刘楠,等.某露天铁矿及其周围环境中PM2.5的采集及金属元素监测分析[J].国外医学地理分册,2017,38(1):48-51.Ding Y L, Meng J, Liu N, et al. Collection of PM2.5and determination of metal elements in an open-pit iron mine and surrounding environment[J]. Foreign Medical Science Section of Medgeography,2017,38(1):48-51.
    [19]蔡美芳,党志.磁黄铁矿氧化机理及酸性矿山废水防治的研究进展[J].环境污染与防治,2006,28(1):58-61.Cai M F, Dang Z. A review on pyrrhotite oxidation mechanism and acid mine drainage prevention[J]. Environmental Pollution&Control,2006,28(1):58-61.
    [20]余葱葱,赵委托,高小峰,等.电镀厂周边地表水中重金属分布特征及健康风险评价[J].环境科学,2017,38(3):993-1000.Yu C C, Zhao W T, Gao X F, et al. Distribution characteristics and health risk assessment of heavy metals in surface water around Electroplating Factories[J]. Environmental Science, 2017,38(3):993-1000.
    [21]季文佳,杨子良,王琪,等.危险废物填埋处置的地下水环境健康风险评价[J].中国环境科学,2010,30(4):548-552.Ji W J, Yang Z L, Wang Q, et al.Health risk assessment of groundwater in hazardous waste landfill disposal[J]. China Environmental Science,2010,30(4):548-552.
    [22]张莉,祁士华,瞿程凯,等.福建九龙江流域重金属分布来源及健康风险评价[J].中国环境科学,2014,34(8):2133-2139.Zhang L, Qi S H, Qu C K, et al. Distribution, source and health risk assessment of heavy metals in the water of Jiulong River, Fujian[J].China Environmental Science,2014,34(8):2133-2139.
    [23]余葱葱,赵委托,高小峰,等.陆浑水库饮用水源地水体中金属元素分布特征及健康风险评价[J].环境科学,2018,39(1):89-98.Yu C C, Zhao W T, Gao X F, et al. Distribution characteristics and health risk assessment of metals in drinking water sources from the Luhun Reservoir[J]. Environmental Science,2018,39(1):89-98.
    [24]王世玉,吴文勇,刘菲,等.典型污灌区土壤与作物中重金属健康风险评估[J].中国环境科学,2018,38(4):1550-1560.Wang S Y, Wu W Y, Liu F, et al. Assessment of human health risks of heavy metals in the typical sewage irrigation areas[J]. China Environmental Science, 2018,38(4):1550-1560.
    [25] GB/T 5750.6-2006生活饮用水标准检验方法金属指标[S].
    [26] US EPA. Guidelines for exposure assessment[R]. Washington DC:office of Health and Environmental Assessment, US EPA, 1992:186.
    [27]环境保护部.中国人群暴露参数手册(成人卷)[M].北京中国环境科学出版社,2013:90-780.
    [28]段小丽,王宗爽,李琴,等.基于参数实测的水中重金属暴露的健康风险研究[J].环境科学,2011,32(5):1329-1339.Duan X L, Wang Z S, Li Q, et al. Health risk assessment of heavy metals in drinking water based on field measurement of exposurefactors of Chinese people[J]. Environmental Science, 2011,32(5):1329-1339.
    [29]高瑞忠,秦子元,张生,等.吉兰泰盐湖盆地地下水Cr6+、As、Hg健康风险评价[J].中国环境科学,2018,38(6):2353-2362.Gao R Z, Qin Z Y, Zhang S, et al. Health risk assessment of Cr6+, As and Hg in groundwater of Jilantai salt lake basin, China[J]. China Environmental Science, 2018,38(6):2353-2362.
    [30] USEPA. EPA/540/1-89/002. Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual(Part A)[S]. 1989.
    [31] United States Environmental Protection Agency(US EPA). Risk Assessment Guidance for Superfund Volume I:Human Health Evaluation Manual. Supplemental Guidance."Standard Default Exposure Factors"Interim Final[R]. Washington D C:US EPA, 1991.
    [32] States Environmental Protection Agency(EPA). Available information on assessment exposure from pesticides in food-Aser's guide[S]. U.S. Environmental Protection Agency, Office of Pesticide Programs,2000.
    [33] EPA, Risk-based concentration table[S]. http://www. epa.gov/reg3hwmd/risk/human/rbc/rbc1006. pdf. 2006.
    [34] GB/T 14848-2017地下水质量标准[S].
    [35]祝慧娜,袁兴中,曾光明,等.基于区间数的河流水环境健康风险模糊综合评价模型[J].环境科学学报,2009,29(7):1527-1533.Zhu H N, Yuan X Z, Zeng G M, et al. An integrated fuzzyodel based on interval numbers for assessment of environmental health risks of water sources[J]. Acta Scientiae Circumstantiae,2009,29(7):1527-1533.
    [36]王若师,许秋瑾,张娴,等.东江流域典型村饮用水源地重金属污染健康风险评价[J].环境科学,2012,33(9):3083-3088.Wang R S, Xu Q J, Zhang X, et al. Health risk assessment of heavy metals in typical township water sources in Dongjiang River Basin[J].Environmental Science, 2012,33(9):3083-3088.
    [37]杜维,李爱民,鲁敏,等.长江武汉段水质重金属健康风险初步评价[J].环境科学与技术,2014,37(120):535-539.Du W,Li A M,Lu M,et al. Preliminary health risk assessment for heavy metals in the Yangtze River of Wuhan Area[J]. Environmental Science&Technology,2014,37(120):535-539.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700