用户名: 密码: 验证码:
压裂层双重介质中煤层水渗流规律仿真试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation of dual-porosity medium seepage flow in fractured zone
  • 作者:帅官印 ; 张永波 ; 郑秀清 ; 陈军锋 ; 张志祥 ; 赵雪花
  • 英文作者:SHUAI Guanyin;ZHANG Yongbo;ZHENG Xiuqing;CHEN Junfeng;ZHANG Zhixiang;ZHAO Xuehua;Department of Hydraulic Engineering,Taiyuan University of Technology;
  • 关键词:煤层气 ; 水力压裂 ; 双重介质 ; 煤层水 ; 渗流规律
  • 英文关键词:coalbed methane;;hydraulic fracturing;;dual-porosity medium;;coalbed water;;seepage flow
  • 中文刊名:MTKJ
  • 英文刊名:Coal Science and Technology
  • 机构:太原理工大学水利科学与工程学院;
  • 出版日期:2019-05-15
  • 出版单位:煤炭科学技术
  • 年:2019
  • 期:v.47;No.534
  • 基金:山西省基础研究资助项目(2014012002)
  • 语种:中文;
  • 页:MTKJ201905023
  • 页数:6
  • CN:05
  • ISSN:11-2402/TD
  • 分类号:151-156
摘要
为了探究发生井间干扰前煤层水的渗流规律及双重介质的渗透性规律,利用COMSOL Multiphysics多物理场仿真软件,对煤层气开采压裂煤储层后形成双重介质中煤层水渗流特性进行了仿真试验研究。试验结果表明:排水一段时间后,裂缝区域裂隙水压力明显低于周围煤岩孔隙水压力;在任意一条垂直于裂缝的压力切面上,裂缝处压力最低,向两边压力逐渐升高;沿裂缝方向,裂缝末端压力最高,靠近井筒,压力降低,井筒处压力最低;排水时,裂缝中的煤层水最先进入井筒,并且水头降低很快,同时,在压差作用下,煤岩中的水不断渗流进入裂缝,再经裂缝流入井筒;将测得的流速水头数据拟合后,得到双重介质x方向上渗透系数为0.013 5 m/s,y方向渗透系数为8×10~(-8)m/s。研究结果可为分析煤层气开采对地下水水动力条件和储存条件的影响提供参考。
        This paper focuses on studying the coalbed water flow and dual-porosity medium permeability before the inter-well interference.Coalbed water flow in dual-porosity medium formed by fracturing coal seams is simulated using COMSOL multi-physics software.The results show that the fissure water pressure in fissure zone is significantly lower than the pore water pressure in the coal after a period of draining.The pressure at the fracture is the lowest and increases gradually toward both sides on any tangential plane. Along the direction of fracture,the pressure at the end of the fracture is the highest while the pressure is the lowest at the wellbore.When draining,coalbed water of fracture firstly enters the wellbore with rapid decrease of head. Due to differential pressure,the coalbed water flows into the fracture continuously,then flows into the wellbore.According to the measuring datas of flow velocity head,the permeability of the dual-porosity medium is 0.013 5 m/s in the x-direction and 8×10~(-8)m/s in the y-direction.The researeach results can provide the reference for the analysis of the influence of CBM exploitation on the hydrodynamic and storage conditions of ground water.
引文
[1]孙可明.低渗透煤层气开采与注气增产流固耦合理论及其应用[D].阜新:辽宁工程技术大学,2004.
    [2]张华珍,王利鹏,刘嘉.煤层气开发技术现状及发展趋势[J].石油科技论坛,2013,32(5):17-21,27,65.ZHANG Huazhen,WANG Lipeng,LIU Jia.Presentconditions and development trend of CBM technology[J].Oil Forum,2013,32(5):17-21,27,65.
    [3]王博洋,秦勇,申建,等.我国低煤阶煤煤层气地质研究综述[J].煤炭科学技术,2017,45(1):170-179.WANG Boyang,QIN Yong,SHEN Jian,et al.Summarization of geological study on low rank coalbed methane in China[J].Coal Science and Technology,2017,45(1):170-179.
    [4]李五忠,孙斌,孙钦平,等.以煤系天然气开发促进中国煤层气发展的对策分析[J].煤炭学报,2016,41(1):67-71.LI Wuzhong,SUN Bin,SUN Qinping,et al.Analysis on coal-bed methane development based on coal measure gas in China and its counter-measure[J].Journal of China Coal Society,2016,41(1):67-71.
    [5]毕彩芹,迟焕鹏,单衍胜,等.水城矿区煤层气储层特征及压裂改造工艺研究[J].煤炭科学技术,2017,45(9):182-187.BI Caiqin,CHI Huanpeng,SHAN Yansheng,et al.Analysis of coalbed methane reservoir characteristics and reconstruction process in Shuicheng Mining[J].Coal Science and Technology,2017,45(9):182-187.
    [6]张小东,张鹏,刘浩,等.高煤级煤储层水力压裂裂缝扩展模型研究[J].中国矿业大学学报,2013,42(4):573-579.ZHANG Xiaodong,ZHANG Peng,LIU Hao,et al.Fracture extended model under hydraulic fracturing engineering for high rank coal reservoirs[J].Journal of China University of Mining&Technology,2013,42(4):573-579.
    [7]付雪海,秦勇,韦重韬.煤层气地质学[M].徐州:中国矿业大学出版社,2007:237-242.
    [8]薛禹群.地下水动力学[M].北京:地质出版社,1997:39-42.
    [9]秦跃平,刘鹏,刘伟,等.双重介质煤体钻孔瓦斯双渗流模型及数值解算[J].中国矿业大学学报,2016,45(6):1111-1117.QIN Yueping,LIU Peng,LIU Wei,et al.Modeling and numerical simulation of borehole methane flow in a dual-porosity,dual-permeability coal[J].Journal of China University of Mining&Technology,2016,45(6):1111-1117.
    [10]PROB Thararoop,ZULEIMA T K,TURGAY E.Development of a multi-mechanistic,dual-permeability,numerical flow model for coalbed mechane reservoirs[J].Journal of Natural Gas Science and Engineering,2012(8):121-131.
    [11]徐轶,徐青.基于COMSOL Multiphysics的渗流有限元分析[J].武汉大学学报:工学版,2014,47(2):165-170.XU Yi,XU Qing.Finite element analysis of seepage based on COMSOL Multiphysics[J].Engineering Journal of Wuhan University,2014,47(2):165-170.
    [12]闫霞,李小军,赵辉,等.煤层气井井间干扰研究及应用[J].岩性油气藏,2015,27(2):126-132.YAN Xia,LI Xiaojun,ZHAO Hui,et al.Research on well interference of coalbed methane wells and its application[J].Lithologic Reseviors,2015,27(2):126-132.
    [13]接铭训.鄂尔多斯盆地东缘煤层气勘探开发前景[J].天然气工业,2010,30(6):1-6,121.JIE Mingxun.Prospects in coalbed methane gas exploration and production in the eastern Ordos Basin[J].Natural Gas Industry,2010,30(6):1-6,121.
    [14]傅雪海,秦勇,韦重韬.煤层气地质学[M].徐州:中国矿业大学出版社,2007:43-44.
    [15]张志昌,李国栋,李治勤.水力学[M].北京:中国水利水电出版社,2011:3-5.
    [16]申卫兵,张保平.不同煤阶煤岩力学参数测试[J].岩石力学与工程学报,2000,19(S1):860-862.SHEN Weibing,ZHANG Baoping.Testing study on mechanical parameters of coal[J].Chinese Journal of Rock Mechanics and Engineering,2000,19(S1):860-862.
    [17]周志芳.裂隙介质水动力学原理[M].北京:高等教育出版社,2007:32-36.
    [18]李淑君,王惠泉,赵文玉,等.基于COMSOL多物理场耦合仿真建模方法研究[J].机械工程与自动化,2014(4):19-20,23.LI Shujun,WANG Huiquan,ZHAO Wenyu,et al.Multiphsics coupling simulation modeling metheds based on COMSOL[J].Mechanical Engineering&Automation,2014(4):19-20,23.
    [19]焦会青.绿洲棉田膜下滴灌土壤水盐运移模型构建及应用[D].北京:中国农业大学,2018.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700