用户名: 密码: 验证码:
燃煤电厂SO_3排放特征及其脱除技术
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Emission characteristics and removal technology of SO_3 from coal-fired power plants
  • 作者:刘含笑 ; 陈招妹 ; 王少权 ; 蔡锡锋 ; 郭高飞 ; 沈敏超 ; 周冰
  • 英文作者:LIU Hanxiao;CHEN Zhaomei;WANG Shaoquan;CAI Xifeng;GUO Gaofei;SHEN Minchao;ZHOU Bing;Zhejiang Feida Environmental Science & Technology Co.Ltd.;
  • 关键词:燃煤电厂 ; SO_3 ; 排放特征 ; 脱除技术
  • 英文关键词:coal-fired power plant;;SO_3;;emission characteristics;;removal technology
  • 中文刊名:HJJZ
  • 英文刊名:Chinese Journal of Environmental Engineering
  • 机构:浙江菲达环保科技股份有限公司;
  • 出版日期:2019-03-19 09:17
  • 出版单位:环境工程学报
  • 年:2019
  • 期:v.13
  • 基金:国家重点研发计划项目(2016YFC0209107);; 浙江省重点研发计划项目(2018C03SA631191)
  • 语种:中文;
  • 页:HJJZ201905016
  • 页数:11
  • CN:05
  • ISSN:11-5591/X
  • 分类号:126-136
摘要
通过现场实测和文献调研相结合的方式,对目前燃煤电厂SO_3排放特征进行较全面的表征,排放浓度为0.3~22.7 mg·m~(-3),按10 mg·m~(-3)和5 mg·m~(-3)排放限值考核,达标率分别为89.8%、66.7%。对现有除尘、脱硫设备及新技术的SO_3脱除能力进行定量分析,常规电除尘器对SO_3脱除率仅为10%~20%;低低温电除尘技术可达95%以上;电袋复合除尘器可达80%以上;常规石灰石石膏湿法脱硫技术多在30%~60%,采用旋汇耦合、双托盘等技术后,SO_3脱除率可达90%以上;金属板式湿式电除尘器多在50%~80%,导电玻钢管式湿式电除尘器多在60%~90%;碱基干粉或溶液喷射技术均可达到80%以上的SO_3脱除效果;烟气冷凝相变凝聚技术在消除有色烟羽的同时,也具有一定的SO_3脱除效果。根据不同SO_3脱除技术对比结果,碱基喷射技术不仅可以实现较高SO_3脱除效果,还可有效解决空预器的腐蚀、堵塞等问题,将是未来解决高浓度SO_3问题的主流技术方向。
        The current emission characteristics of SO_3 from coal-fired power plants was comprehensively characterized by field measurement and literature survey, the emission concentration was determined as 0.3~22.7 mg·m~(-3) with the compliance rates of 89.8% and 66.7% according to the emission limits of 10 mg·m~(-3) and 5 mg·m~(-3), respectively. Based on quantitative analysis of the SO_3 removal capacities of the existed equipment for dust removal and desulphurization and new technology, the SO_3 removal efficiencies of conventional ESP, LLESP and EF were only 10%~20%, higher than 95% and higher than 80%, respectively. For the conventional WFGD, the SO_3 removal efficiency was mostly 30%~60%, while it could be improved up to higher than 90%when spiral-sink coupling, double pallet and other technologies were used. Moreover, the SO_3 removal efficiencies were mostly 50%~80%, 60%~90% and higher than 80% for the metal plate type WESP, the conductive glass tube type WESP and alkaline dry powder or solution injection technology, respectively. The colored plume and SO_3 could be synchronously removed by PCA technology. Based on the comparison of different SO_3 removal technologies, the alkaline dry powder injection technology can not only achieve higher SO_3 removal effect, but also solve the corrosion, blockage and other problems of air heater effectively, which will be a major technology direction for solving the problem of SO_3 with high concentration in the future.
引文
[1]郦建国,朱法华,孙雪丽.中国火电大气污染防治现状及挑战[J].中国电力, 2018, 51(6):2-10.
    [2]孙雪丽,朱法华,王圣,等.燃煤电厂颗粒物超低排放技术路线选择[J].环境工程技术学报, 2018, 8(2):129-136.
    [3]郑楚光.洁净煤技术[M].武汉:华中理工大学出版社, 1996.
    [4]马广大.大气污染控制工程[M].北京:中国环境科学出版社, 2004.
    [5]中国环境保护产业协会电除尘委员会.燃煤电厂烟气超低排放技术[M].北京:中国电力出版社, 2015.
    [6]刘含笑,姚宇平,郦建国,等.燃煤电厂烟气中SO3生成、治理及测试技术研究[J].中国电力, 2015, 48(9):152-156.
    [7] HUANG R J, ZHANG Y L, CARLO B, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514(7521):218-222.
    [8]舒喜,田原润,惠润堂,等. SO3在燃煤电厂各设备中形成和脱除现状研究[J].环境科学与技术, 2017, 40(11):121-126.
    [9]王定帮,雷鸣,余福胜,等.燃煤机组SO3迁移规律及排放特性试验[J].热力发电, 2018, 47(11):96-101.
    [10]潘丹萍,吴昊,鲍静静,等.电厂湿法脱硫系统对烟气中细颗粒物及SO3酸雾脱除作用研究[J].中国电机工程学报,2016, 36(16):4356-4362.
    [11]陈鹏芳,朱庚富,张俊翔.基于实测的燃煤电厂烟气协同控制技术对SO3去除效果的研究[J].环境污染与防治, 2017,39(3):232-235.
    [12]沈志刚,刘启贞,陶雷行,等.湿式电除尘器对烟气中颗粒物的去除特性[J],环境工程学报, 2016, 10(5):2557-2561.
    [13]杨玮,孙彬彬,王雪,等.山西某电厂燃煤烟气SO3与颗粒物排放特征[J],环境工程, 2018, 36(1):83-87.
    [14]陈瑶姬,孟炜,胡达清.燃煤电厂烟气超低排放技术对三氧化硫脱除影响的研究[J],上海节能, 2015(12):657-660.
    [15]杨丁,陈永强,陈威祥,等. SO3采样技术改进及烟气处理设备SO3脱除能力测试[J].中国电力, 2018, 51(7):157-161.
    [16]聂孝峰,张超,刘源,等.湿式电除尘(雾)器在燃煤电厂300MW机组上的应用[J].电力科技与环保, 2016, 32(2):31-34.
    [17]刘含笑,姚宇平,郦建国,等.燃煤电厂烟气中低浓度SO3采样方法研究[J].环境工程, 2017, 35(11):139-142.
    [18]张德君,刘含笑,赵琳,等.燃煤电厂可凝结颗粒物(SO3)采样方法研究[J].中国电力, 2018, 51(6):1-5
    [19]李皓然,刘含笑,赵琳,等.湿式电除尘器性能测试方法及排放特征研究[J].中国电力, 2018, 51(9):1-7.
    [20]吴金,刘含笑,郦建国,等.基于中试平台的低低温电除尘器深度试验研究[J].中国电力, 2018, 51(6):11-16.
    [21]刘含笑,姚宇平,郦建国,等.低低温电除尘技术适用性及污染物减排特性研究[J].动力工程学报, 2018, 38(8):650-657.
    [22]刘含笑,姚宇平,郦建国,等.一种适用于低浓度三氧化硫采样的采样系统:201710049703. 7[P]. 2017-06-09.
    [23]魏宏鸽,程雪山,马颜斌,等.燃煤烟气中SO3的产生与转化及其抑制对策谈谈[J].发电与空调, 2012, 33(2):1-4.
    [24]纪培栋. SCR催化剂SO2氧化机理及调控机制研究[D].杭州:浙江大学, 2016.
    [25]刘含笑,袁建国,郦祝海,等.低低温工况下颗粒凝并机理分析及研究方法初探[J].电力与能源, 2015, 36(1):107-111.
    [26]刘含笑,郦建国,姚宇平,等.电除尘器飞灰粒径表征及细颗粒降温团聚[J].化工进展, 2018, 37(6):2413-2425.
    [27]中国环境保护产业协会电除尘委员会.燃煤电厂烟气超低排放技术[M].北京:中国电力出版社, 2015.
    [28]郦建国,郦祝海,何毓忠,等.低低温电除尘技术的研究及应用[J].中国环保产业, 2014(3):28-34.
    [29]名嶋慎司.石炭火力用低低温電気集塵装置[J].住友重機械技報, 2001, 146:35-38.
    [30] YOSHIO N, WALKER J, BELO L, et al. SO3emission and removal by dust in coal-fired oxy-fuel combustion[J]. Energy&Fuel, 2014, 28(8):5296-5306.
    [31]陈奎续.电袋复合除尘+湿法脱硫工艺脱除多污染物的效果研究[J].环境污染与防治, 2018, 40(4):398-403.
    [32]刘勇.碱基吸收剂喷射脱除燃煤烟气中SO3的实验研究[D].杭州:浙江大学, 2018.
    [33] SRIVASTAVA R, MILLER C, ERICKSON C, et al. Emissions of sulfur trioxide from coal-fired power plants[J]. Journal of the Air&Waste Management Association, 2004, 54(6):750-762.
    [34]莫华,朱杰,黄志杰,等.超低排放下不同湿法脱硫技术脱除SO3效果测试与分析[J].中国电力, 2017, 50(3):46-51.
    [35]杜振,杨立强,魏宏鸽,等.低低温电除尘器对粉尘特性和SO3[J].中国电力, 2017, 50(9):125-128.
    [36] YANG Z D, ZHENG C H, ZHANG X F, et al. Highly efficient removal of sulfuric acid aerosol by a combined wet electrostatic precipitator[J]. RSC Advances, 2018, 8(1):59-66.
    [37]张雪峰,杨正大,李响,等. SO3对高湿静电场中电晕放电的影响机制研究[J].中国环境科学, 2017, 37(9):3268-3275.
    [38] YANG Z D, ZHENG C H, ZHANG X F, et al. Sulfuric acid aerosol formation and collection by corona discharge in a wet electrostatic precipitator[J]. Energy&Fuels, 2017, 31(8):8400-8406.
    [39] KEENER T C, KHANG S J. Kinetics of the sodium bicarbonate-sulfur dioxide reaction[J]. AICHE Journal, 1987, 33(9):1522-1532.
    [40]陈鹏.钙基吸收剂脱除燃煤烟气中SO3的研究[D].济南:山东大学, 2011.
    [41]陈晓露,赵钦新,鲍颖群,等.SO3脱除技术实验研究[J].动力工程学拫, 2014, 34(12):966-971.
    [42]娄彤,方晓东,陆明智,等.燃煤烟气多污染物协同治理试验研究[J].洁净煤技术, 2018, 24(5):966-971.
    [43]谭厚章,熊英莹,王毅斌,等.湿式相变凝聚器协同多污染物脱除研究[J].中国电力, 2017, 50(2):128-134.
    [44] TAN H, WANG Y, CAO R, et al. Development of wet phase transition agglomerator for multi-pollutant synergistic removal[J].Applied Thermal Engineering, 2017, 130:1208-1214.
    [45]王述浩,李水清,段璐,等.相变凝聚器内蒸汽凝结与细颗粒团聚规律研究[J].中国电机工程学报, 2017, 37(24):7230-7235.
    [46] LIU J M, ZHU F H, MA X Y. Industrial application of a deep purification technology for flue gas involving phase-transition agglomeration and dehumidification[J]. Engineering, 2018, 4(3):416-420.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700