用户名: 密码: 验证码:
不同类型城市人工湿地水体汞的分布特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distribution Characteristics of Mercury in Different Urban Constructed Wetlands
  • 作者:樊宇飞 ; 刘伟豪 ; 孙涛 ; 苑萌 ; 吕东威 ; 李先源 ; 王永敏 ; 王定勇
  • 英文作者:FAN Yu-fei;LIU Wei-hao;SUN Tao;YUAN Meng;Lü Dong-wei;LI Xian-yuan;WANG Yong-min;WANG Ding-yong;College of Resources and Environment,Southwest University;College of Horticulture and Landscape Architecture,Southwest University;Chongqing Key Laboratory of Agricultural Resources and Environment;
  • 关键词:人工湿地 ; ; 甲基汞 ; 甲基化 ; 季节变化
  • 英文关键词:constructed wetland;;mercury;;methlymercury;;methylation;;seasonal variation
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:西南大学资源环境学院;西南大学园艺园林学院;重庆市农业资源与环境研究重点实验室;
  • 出版日期:2018-12-20 07:04
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(41671469,41603103);; 国家大学生创新训练重点项目(201710635031)
  • 语种:中文;
  • 页:HJKZ201905027
  • 页数:8
  • CN:05
  • ISSN:11-1895/X
  • 分类号:230-237
摘要
为了解城市人工湿地水体中汞的时空分布及甲基化特征,以便探究其潜在的汞暴露生态风险,在重庆市选择4个不同类型的人工湿地,于2017年3月~2018年3月,按季度采集垂直剖面水样,分析总汞(THg)和甲基汞(MeHg)的分布.结果表明:城市人工湿地由于景观布局、功能设置不同,其汞分布特征有一定差异. 4个湿地水体THg均高于背景水域,但远低于有污染历史的水体;湿地中部水体THg均略高于进、出水口,表明城市湿地对水体THg有截留作用.除彩云湖湿地出水口MeHg浓度高于入水口外,其余3个湿地出水口MeHg均低于入水口;湿地中水体MeHg呈随水深增加而升高的趋势,且MeHg占THg的比例(MeHg/THg)均高于其他水域,说明城市湿地具有净汞甲基化的作用. 4个城市湿地水体THg春秋两季高,夏季略有降低,冬季最低;水体MeHg冬季最低,而其他三季差异不大但远高于冬季,约为冬季的3倍.本研究明晰了城市湿地中汞的时空分布和甲基化规律,探究了人类活动对湿地的干扰程度和湿地的响应特征以及湿地汞对下游流域的影响,从控制潜在汞暴露风险的角度,为人工湿地建设提供建议.
        To explore the spatial and temporal distribution and the methylation characteristics of mercury in different constructed wetlands in cities,and to understand the potential ecological exposure of mercury in urban wetlands,four artificial wetlands in Chongqing were studied from March 2017 to March 2018. The water samples were collected separately in four quarters,and the mass concentration of total mercury( THg) and methyl mercury( MeHg) was researched for one year. The results showed that the THg concentration in the four wetland waters is higher than the background value of the world's lakes and reservoirs for dam construction,but it is far lower than the waters with pollution history. The THg mass concentration of the water inside the wetlands is slightly higher than in the inlet and outlet. In addition,the THg mass concentration in the aquatic plant growing area,the construction area,the cruise ship parking area,and the frequent play area has an increasing trend,indicating that urban wetlands have a trapping and converging effect of the water's THg,so human activities influence total mercury a lot. The mass concentration of MeHg in the four wetland waters was slightly higher than that in other water bodies. With the exception of the Caiyun Lake,where the mass concentration of MeHg at the outlet was higher than that of the water inlet,the other three wetlands showed lower MeHg mass concentration in the outlet than the inlet. The mass concentration of MeHg in the wetland water increased with increasing water depth. The ratio of MeHg concentration to THg mass concentration( MeHg/THg) was higher than in other waters,indicating that urban wetlands have effect on net mercury methylation from waters. The photoreduction of mercury and its absorption by aquatic plants can reduce the mercury load from urban wetlands to downstream watersheds. The THg mass concentration of the four urban wetland water bodies was high in the spring and autumn,with a slight decrease in the summer,and lowest in the winter. The mass concentration of MeHg was the lowest in winter,and in the other three seasons it was basically flat,about three times higher than in winter. This study clarifies the temporal and spatial distribution and methylation of mercury in urban wetlands. It explores the degree of disturbance of human activities on wetlands and the response characteristics,as well as the impact of wetland mercury on downstream watersheds. To avoid potential mercury exposure,measures need to be established for the construction of artificial wetlands.
引文
[1]Ullrich S M,Tanton T W,Abdrashitova S A.Mercury in the aquatic environment:A review of factors affecting methylation[J].Critical Reviews in Environmental Science and Technology,2001,31(3):241-293.
    [2]Zhang H,Feng X B,Larssen T,et al.Bioaccumulation of methylmercury versus inorganic mercury in rice(Oryza sativa L.)grain[J].Environmental Science&Technology,2010,44(12):4499-4504.
    [3]Lindqvist O,Johansson K,Bringmark L,et al.Mercury in the Swedish environment-Recent research on causes,consequences and corrective methods[J].Water,Air,and Soil Pollution,1991,55(1-2):xi-261.
    [4]吕宪国.湿地生态系统保护与管理[M].北京:化学工业出版社,2004.22-24.
    [5]王起超,刘汝海,吕宪国,等.湿地汞环境过程研究进展[J].地球科学进展,2002,17(6):881-885.Wang Q C,Liu R H,Lu X G,et al.Progress of study on the mercury process in the wetland environment[J].Advance in Earth Sciences,2002,17(6):881-885.
    [6]阎海鱼,冯新斌,商立海,等.天然水体中痕量汞的形态分析方法研究[J].分析测试学报,2003,22(5):10-13.Yan H Y,Feng X B,Shang L H,et al.Speciation analysis of ultra trace levels of mercury in natural waters[J].Journal of Instrumental Analysis,2003,22(5):10-13.
    [7]蒋红梅,冯新斌,梁琏,等.蒸馏-乙基化GC-CVAFS法测定天然水体中的甲基汞[J].中国环境科学,2004,24(5):568-571.Jiang H M,Feng X B,Liang L,et al.Determination of methyl mercury in waters by distillation-GC-CVAFS technique[J].China Environmental Science,2004,24(5):568-571.
    [8]黄敏.钼酸铵分光光度法准确测定地表水中总磷的研究[J].环境科学与管理,2017,42(9):141-143.Huang M.Determination of total phosphorus in surface water with ammonium molybdate spectrophotometric method[J].Environmental Science and Management,2017,42(9):141-143.
    [9]彭鹏,石慧.碱性过硫酸钾消解紫外分光光度法测定水样中的总氮[J].污染防治技术,2008,21(2):86-88.Peng P,Shi H.Determination of total nitrogen in waste water by alkaline potassium persulfate digestion-UV spectrophotometric method[J].Pollution Control Technology,2008,21(2):86-88.
    [10]江苏省环境监测中心,国家环境保护地表水环境有机污染物监测分析重点实验室.地表水环境质量80个特定项目监测分析方法[M].北京:中国环境科学出版社,2009.
    [11]Hines N A,Brezonik P L,Engstrom D R.Sediment and porewater profiles and fluxes of mercury and methylmercury in a small seepage lake in northern Minnesota[J].Environmental Science&Technology,2004,38(24):6610-6617.
    [12]Gray J E,Hines M E.Biogeochemical mercury methylation influenced by reservoir eutrophication,Salmon Falls Creek Reservoir,Idaho,USA[J].Chemical Geology,2009,258(3-4):157-167.
    [13]Nguyen H L,Leermakers M,Kurunczi S,et al.Mercury distribution and speciation in Lake Balaton,Hungary[J].Science of the Total Environment,2005,340(1-3):231-246.
    [14]程柳,毛宇翔,麻冰涓,等.汞在小浪底水库的赋存形态及其时空变化[J].环境科学,2015,36(1):121-129.Cheng L,Mao Y X,Ma B J,et al.Speciation and spatialtemporal variation of mercury in the Xiaolangdi Reservoir[J].Environmental Science,2015,36(1):121-129.
    [15]He T R,Feng X B,Guo Y N,et al.The impact of eutrophication on the biogeochemical cycling of mercury species in a reservoir:a case study from Hongfeng Reservoir,Guizhou,China[J].Environmental Pollution,2008,154(1):56-67.
    [16]Wang S F,Zhang M M,Li B,et al.Comparison of mercury speciation and distribution in the water column and sediments between the algal type zone and the macrophytic type zone in a hypereutrophic lake(Dianchi Lake)in Southwestern China[J].Science of the Total Environment,2012,417-418:204-213.
    [17]孙涛,马明,王永敏,等.西南地区典型森林水库土壤和沉积物汞的迁移转化特征[J].环境科学,2018,39(4):1880-1887.Sun T,Ma M,Wang Y M,et al.Migration and transformation of mercury in unsubmerged soil and sediment at one typical forest reservoir in Southwest China[J].Environmental Science,2018,39(4):1880-1887.
    [18]王娅,赵铮,木志坚,等.三峡库区典型农田小流域水体汞的时空分布特征[J].环境科学,2014,35(11):4095-4102.Wang Y,Zhao Z,Mu Z J,et al.Spatial and temporal distribution of mercury in water of a small typical agricultural watershed in the Three Gorges Reservoir Region[J].Environmental Science,2014,35(11):4095-4102.
    [19]白薇扬,张成,唐振亚,等.长寿湖水库垂直剖面不同形态汞的季节变化特征及其影响因素[J].环境科学,2015,36(10):3649-3661.Bai W Y,Zhang C,Tang Z Y,et al.Seasonal variations in vertical profile of Hg species and the influential factors in Changshou Reservior[J].Environmental Science,2015,36(10):3649-3661.
    [20]Kelly C A,Rudd J W M,St.Louis V L,et al.Is total mercury concentration a good predictor of methyl mercury concentration in aquatic systems?[J].Water,Air,and Soil Pollution,1995,80(1-4):715-724.
    [21]Gustin M S,Chavan P V,Dennett K E,et al.Evaluation of wetland methyl mercury export as a function of experimental manipulations[J].Journal of Environmental Quality,2006,35(6):2352-2359.
    [22]Regnell O,Elert M,H9glund L O,et al.Linking cellulose fiber sediment methyl mercury levels to organic matter decay and major element composition[J].Ambio,2014,43(7):878-890.
    [23]Ma M,Du H X,Wang D Y,et al.Biotically mediated mercury methylation in the soils and sediments of Nam Co Lake,Tibetan Plateau[J].Environmental Pollution,2017,227:243-251.
    [24]Bachand P A M,Bachand S M,Fleck J A,et al.Reprint of"Methylmercury production in and export from agricultural wetlands in California,USA:the need to account for physical transport processes into and out of the root zone"[J].Science of the Total Environment,2014,484:249-262.
    [25]刘汝海,王起超,吕宪国,等.三江平原湿地汞的地球化学特征[J].环境科学学报,2002,22(5):661-663.Liu R H,Wang Q C,LüX G,et al.The geochemistry characteristic of mercury in Sanjiang Plain Marsh[J].Acta Scientiae Circumstantiae,2002,22(5):661-663.
    [26]王起超,王书海,王稔华,等.松花江吉林---扶余江段沉积汞释放速率的模拟研究[J].地理科学,1990,10(4):365-371.Wang Q C,Wang S H,Wang R H,et al.Study on releasing rate of mercury from sediments in JILIN-FUYU reach of the SongHua River[J].Scientia Geographica Sinica,1990,10(4):365-371.
    [27]Veiga M M,Meech J A,O1ate N.Mercury pollution from deforestation[J].Nature,1994,368(6474):816-817.
    [28]刘汝海,刘诗璇,王杰,等.秋夏季黄河三角洲湿地土壤汞和甲基汞的变化[J].环境科学学报,2017,37(1):272-279.Liu R H,Liu S X,Wang J,et al.Change of mercury and methylmercury in Yellow River Delta wetlands from autumn to summer[J].Acta Scientiae Circumstantiae,2017,37(1):272-279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700