用户名: 密码: 验证码:
CH_4-CO_2重整炭基催化剂的制备及应用研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and application of CH_4-CO_2 reforming carbon-based catalyst
  • 作者:吕鹏刚 ; 张浩 ; 刘朋 ; 宣乐 ; 徐龙 ; 马晓迅
  • 英文作者:Lü Peng-gang;ZHANG Hao;LIU Peng;XUAN Le;XU Long;MA Xiao-Xun;School of Chemical Engineering, Northwest University, International Scientific and Technological Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advance Use Technology of Shanbei Energy, Shaanxi Research Center of Engineering Technology for Clean Coal Conversion, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi;
  • 关键词:液化残渣 ; 氢氧化钾活化法 ; 炭基催化剂 ; 甲烷-二氧化碳重整
  • 英文关键词:liquefaction residue;;KOH activation method;;carbon catalyst;;CH_4-CO_2 reforming
  • 中文刊名:TRQH
  • 英文刊名:Natural Gas Chemical Industry
  • 机构:碳氢资源清洁利用国际科技合作基地陕北能源先进化工利用技术教育部工程研究中心陕北能源化工产业发展协同创新中心陕西省洁净煤转化工程技术研究中心西安市能源高效清洁化工利用工程实验室西北大学化工学院;
  • 出版日期:2019-04-25
  • 出版单位:天然气化工(C1化学与化工)
  • 年:2019
  • 期:v.44;No.245
  • 基金:国家重点研发计划项目课题(2018YFB0604603);; 陕西省重点研发计划(2018ZDXMGY-167);; 陕西省教育厅服务地方专项计划项目(17JF029)
  • 语种:中文;
  • 页:TRQH201902001
  • 页数:7
  • CN:02
  • ISSN:51-1336/TQ
  • 分类号:5-11
摘要
以神华集团煤直接液化残渣为原料,采用KOH活化法,经炭化、活化一体反应制得炭基催化剂。利用TG、SEM、BET、XRD等表征分析,确定了炭基催化剂的制备条件,探究了炭基催化剂的失重行为、碱炭比、比表面积及孔径的大小等因素对CH_4-CO_2重整制合成气反应催化活性的影响。结果表明在经过KNO_3预氧化、碱炭质量比为3的KOH活化条件下制备的炭基催化剂,收率为43.3%、比表面积达到1632m~2/g,该催化剂在CH_4-CO_2重整反应中具有良好的催化效果,可使CH_4和CO_2的转化率均达90%以上。
        Taking the Shenhua Group coal direct liquefaction residue as raw material, a KOH activation method was used to produce a carbon-based catalyst through carbonization and activation. TG, SEM, BET and XRD were employed to characterize the catalyst. The preparation conditions of the catalyst were determined, and the effects of the weight loss behavior of the catalyst, the ratio of alkali to carbon, the specific surface area, and the pore size on the catalytic activity in CH_4-CO_2 reforming to syngas were investigated. The results showed that preparing the catalyst by KOH activation with KNO_3 pre-oxidation and an alkaline/carbon mass ratio of 3 could obtain a 43.3% yield of catalyst with a specific surface area of 1632 m~2/g, and the catalyst exhibied good catalytic activity in CH_4-CO_2 reforming, giving a conversion of above 90% for both of CH_4 and CO_2.
引文
[1]Cao W S,Bluth C.Challenges and countermeasures of China’s energy security[J].Energy Policy,2013,53:381-388.
    [2]曹新荣.我国能源贸易能源结构与能源利用效率[D]济南:山东财经大学,2014.
    [3]岑建孟,方梦祥,王勤辉,等.煤分级利用多联产技术及其发展前景[J].化工进展,2011,30(01):88-94.
    [4]赵鹏飞,徐春华.煤制油配套变换技术方案的比选探讨[J].现代化工,2017,37(8):186-189.
    [5]高晋生,张德祥.煤液化技术[M].化学工业,2005.
    [6]赵锦波,王玉庆.煤气化技术的现状及发展趋势[J].石油化工,2014,43(2):125-131.
    [7]谷小会.神华煤直接液化残渣结构特性的探讨[D].北京:煤炭科学研究总院,2005.
    [8]胡发亭,田青运.煤液化残渣性质及应用研究进展[J]洁净煤技术,2007,13(4):21-24.
    [9]Cornils B,Hibbel J,Ruprecht P,et al.Gasification of hydrogenation residues using the Texaco coal gasification process[J].Fuel Process Technol,1984,9(3):251-264.
    [10]陈明波,王彬,赵奇,等.煤直接液化残渣焦化特性研究[J].洁净煤技术,2005,11(1):29-33.
    [11]王寨霞,杨建丽,刘振宇.煤直接液化残渣对道路沥青改性作用的初步评价[J].燃料化学学报,2007,(1):109-112.
    [12]Zhou Y,Xiao N,Qiu J,et al.Preparation of carbon microfibers from coal liquefaction residue[J].Fuel,2008,87:3474-3476.
    [13]Nan X,Ying Z,Qiu J S,et al.Preparation of carbon microfibers/carbon foam monolithic composite from coal liquefaction residue[J].Fuel,2010,89:1169-1171.
    [14]Lozano D.Preparation of activated carbons from Spanish anthracite:II.Activation by Na OH[J].Carbon,2001,39:751-759.
    [15]常鸿雁,程时富,王国栋,等.神华煤直接液化残渣的萃取分离与利用研发进展[J].煤炭工程,2017,49(S1):61-66.
    [16]Hong C,Yang J,Liu Z,et al.Characteristics of residues from thermal and catalytic coal hydroliquefaction[J].Fuel,2003,8:1549-1556.
    [17]赵美霞.煤液化中催化剂的研究进展[J].化工管理2016,(6):112+114.
    [18]张景灿,张春桃,赵社库,等.兰炭基均匀超微孔活性炭的制备及其表征[J].功能材料,2017,48:11192-11196+11203.
    [19]Dai X D,Liu X M,Qian L.A novel method to synthesize super-activated carbon for natural gas adsorptive storage[J].J Porous mater,2006,13(3):399-405
    [20]张淮浩,陈进富,郭绍辉,等.低活化比制备天然气吸附剂:活化助剂提高吸附剂性能[J].燃料化学学报,200937(1):98-103.
    [21]舒成,李克健,章序文,等.原料预处理对氢氧化钾活化法制备活性炭的影响[J].炭素技术,2014,33(2):5-8.
    [22]张建波.煤直接液化残渣基炭催化剂的制备及应用[D]大连:大连理工大学,2013.
    [23]岳晓明,吴雅俊,张双全,等.物理化学两步活化法制备煤基活性炭电极材料[J].中国矿业大学学报,2017,46(4):888-894.
    [24]郭明晰.煤基多孔炭材料的制备及其电容性能研究[D]乌鲁木齐:新疆大学,2016.
    [25]玄伟伟,张建胜.化学链燃烧铁基载氧体还原反应积炭趋势[J].化工学报,2012,63(3):904-909.
    [26]Barroso-Quiroga M M,Castro-Lun A E.Catalytic activity and effect of modifiers on Ni-based catalysts for the dry reforming of methane[J].Int J Hydrogen Energy,2010,35:6052-6056.
    [27]张卫东.炭催化CH4-CO2重整及炭催化剂中灰分和官能团特性研究[D].太原:太原理工大学,2009.
    [28]盛英.煤液化残留物溶剂萃取及其萃取物的特性研究[D].北京:煤炭科学研究总院,2009.
    [29]张玲娜,陶金慧,纪开吉,等.碳/碳化铁复合介孔材料的合成及储氢性能[J].高等学校化学学报,2014,35(6)1318-1322.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700