用户名: 密码: 验证码:
基于复杂网络的磁流变橡胶磁致压缩力学性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on magneto-rheological rubber compression mechanical properties based on complex network
  • 作者:柳彬 ; 游世辉 ; 赵树勋 ; 曾宪任
  • 英文作者:LIU Bin;YOU Shihui;ZHAO Shuxun;ZENG Xianren;College of Civil Engineering and Mechanics, Xiangtan University;
  • 关键词:磁流变橡胶 ; 复杂网络 ; 磁致压缩模量 ; 数值模拟 ; 实验研究
  • 英文关键词:magneto-rheological rubber;;complex network;;magneto-induced compressive modulus;;numerical simulation;;experimental study
  • 中文刊名:CSTD
  • 英文刊名:Journal of Railway Science and Engineering
  • 机构:湘潭大学土木工程与力学学院;
  • 出版日期:2019-04-15
  • 出版单位:铁道科学与工程学报
  • 年:2019
  • 期:v.16;No.109
  • 基金:国家自然科学基金资助项目(51375416);; 湖南省教育厅创新平台开放基金资助项目(15K131)
  • 语种:中文;
  • 页:CSTD201904027
  • 页数:9
  • CN:04
  • ISSN:43-1423/U
  • 分类号:213-221
摘要
基于磁流变橡胶在机车的主动减振及降噪领域中的重要作用,引入复杂网络理论和方法来研究磁流变橡胶的磁致压缩力学性能。通过建立磁流变橡胶的RVE模型,利用多物理场耦合有限元软件研究磁流变橡胶的静态磁致压缩力学性能;计算磁流变橡胶的磁性颗粒复杂网络特征参数;探索磁流变橡胶磁性颗粒复杂网络的特征参数与磁流变橡胶磁致压缩模量之间的关系;与实例研究结果进行对比,验证结论的准确性。研究结果表明:磁流变橡胶的磁致压缩模量与其磁性颗粒网络的特征参数有关,其磁致压缩模量的峰值是由磁性颗粒的复杂网络分形特征参数决定的。
        Magneto-rheological rubber plays an important role in the field of active vibration and noise reduction of locomotives. This paper aims to introduce complex network theory and methods to study the magneto-induced compression mechanical properties of magneto-rheological rubber. By establishing the RVE model of magneto-rheological rubber, the static magneto-induced compressive mechanical properties of magnetorheological rubber were simulated using COMSOL multiphysics software. And the topological structure and fractal characteristics of the complex network of magnetic particles were studied. Finally, the association of the magneto-induced compression mechanical properties and complex network parameters was explored. And the results of the simulation study were compared with the experimental study data to verify the accuracy of the conclusions. The results show that the magneto-induced modulus of magneto-rheological rubber is related to the characteristic parameters of the magnetic particles network, and the peak value of magneto-induced modulus is determined by the fractal characteristic parameters.
引文
[1]刘少谦.磁流变橡胶减振器的设计与研究[D].厦门:华侨大学,2008.LIU Shaoqian.Design and research of magnetorheological rubber shock absorber[D].Xiamen:Huaqiao University,2008.
    [2]孙航,高秀云,陈大鹏.基于碳纳米管加强的磁流变橡胶支座在连续梁桥减隔震中的应用分析[EB/OL].http://www.paper.edu.cn/releasepaper/content/201401[2014-01-26].SUN Hang,GAO Xiuyun,CHEN Dapeng.Application analysis of magnetorheological rubber support based on carbon nanotubes in seismic reduction of continuous beam bridges[EB/OL].http://www.paper.edu.cn/release epaper/content/201401[2014-01-26].
    [3]丁志华,游世辉.磁流变弹性体橡胶空气弹簧的结构设计[J].机械设计与制造,2008(10):17-18.DING Zhihua,YOU Shihui.Structural design of magnetorheological elastomeric rubber air spring[J].Mechanical Design&Manufacture,2008(10):17-18.
    [4]游世辉,肖静,冯云华,等.一种磁流变液压橡胶弹簧:中国,201010508586.4[P].2014-12-10.YOU Shihui,XIAO Jing,FENG Yunhua,et al.Amagnetorheological hydraulic rubber spring:China,201010508586.4[P].2014-12-10.
    [5]段富贵.磁流变橡胶材料隔声性能数值模拟[D].湘潭:湘潭大学,2017.DUAN Fugui.Numerical simulation of sound insulation performance of magnetorheological rubber material[D].Xiangtan:Xiangtan University,2017.
    [6]杨罡星.磁流变橡胶材料吸声性能数值模拟[D].湘潭:湘潭大学,2017.YANG Gangxing.Numerical simulation of sound absorption properties of magnetorheological rubber materials[D].Xiangtan:Xiangtan University,2017.
    [7]孙友谊.磁流变橡胶材料的研究现状[R].国家自然基金委员会、扬州大学、北京市新型高分子材料制备加工成型重点实验室、中国化工学会橡胶专业委员会,2016:1.SUN Youyi.Research status of magnetorheological rubber materials[R].National Natural Science Foundation of China,Yangzhou University,Beijing Key Laboratory of New Polymer Material Preparation,Processing and Molding,China Rubber Industry Committee,2016:1.
    [8]游世辉.磁敏橡胶力学性能的研究与应用[D].广州:华南理工大学,2008.YOU Shihui.Research and application of mechanical properties of magnetic resin[D].Guangzhou:South China University of Technology,2008.
    [9]Ioan Bicaa,Eugen M Anitas,Madalin Bunoiuc,et al.Hybrid magnetorheological elastomer:Influence of magnetic field and compression pressure on its electrical conductivity[J].Journal of Industrial and Engineering Chemistry,2014,20(6):3994-3999.
    [10]Lokander M,Stenberg B.Improving the magnetorheological effect in isotropic magnetorheological rubber materials[J].Polymer Testing,2003,22(6):677-680.
    [11]Watts D J,Strogatz S H.Collective dynamics of small world networks[J].Nature,1998(393):440-442.
    [12]Barabási A L,Albert R.Emergence of scaling in random networks[J].Science,1999(286):509-512.
    [13]Silva J,Simoes R,Lanceros-Mendez S,et al.Applying complex network theory to the understanding of high-aspect-ratio carbon-filled composites[J].Euro Physics Letters,2011,93(3):37005.
    [14]Roberto Arévalo,Iker Zuriguel,Diego Maza.Topological properties of the contact network of granular materials[J].International Journal of Bifurcation&Chaos,2009,19(2):695-702.
    [15]张波.复杂网络的构建及演化方式研究[D].长春:吉林大学,2014.ZHANG Bo.Research on the construction and evolution of complex networks[D].Changchun:Jilin University,2014.
    [16]LIU J L,YU Z G,Anh V.Determination of multifractal dimensions of complex networks by means of the sandbox algorithm[J].Chaos,2015,25(2):392-395.
    [17]孙玺菁,司守奎.复杂网络算法与应用[M].北京:国防工业出版社,2015.SUN Xijing,SI Shoukui.Complex network algorithm and application[M].Beijing:Defense Industry Press,2015.
    [18]柳彬,游世辉,赵树勋,等.基于Digimat中RVE模型的磁流变弹性体的磁致压缩力学性能的数值模拟[J].功能材料,2018,49(2):67-75.LIU Bin,YOU Shihui,ZHAO Shuxun,et al.Simulation of magnetic field induced compressive mechanical properties of magneto-rheological elastomers based on RVE model in Digimat[J].Functional Materials,2018,49(2):67-75.
    [19]宋欢.基于图形图像转换的磁流变弹性体拉伸力学性能的数值模拟[D].湘潭:湘潭大学,2017.SONG Huan.Numerical simulation of tensile mechanical properties of magnetorheological elastomer based on graphical image transformation[D].Xiangtan:Xiangtan University,2017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700