用户名: 密码: 验证码:
3D石墨烯增效的磁性功能材料的制备及其吸附性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and adsorption properties of 3D graphene synergistic magnetic functional materials
  • 作者:朱晨 ; 刘敏 ; 李小燕 ; 刘莉 ; 王芳
  • 英文作者:ZHU Chen;LIU Min;LI Xiaoyan;LIU Li;WANG Fang;Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities;Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities;
  • 关键词:3D石墨烯 ; 磁性功能材料 ; 溶菌酶 ; 吸附
  • 英文关键词:3D graphene;;magnetic functional materials;;lysozyme;;adsorption
  • 中文刊名:GNCL
  • 英文刊名:Journal of Functional Materials
  • 机构:广西民族大学化学化工学院广西高校食品安全与药物分析化学重点实验室广西林产化学与工程重点实验室;广西民族大学海洋与生物技术学院广西高校微生物与植物资源利用重点实验室;
  • 出版日期:2019-05-30
  • 出版单位:功能材料
  • 年:2019
  • 期:v.50;No.428
  • 基金:国家自然科学基金资助项目(21545011,21165003);; 广西自然科学基金资助项目(2016GXNSFAA380141);; 广西科技基地和人才专项资助项目(桂科AD18126005);; 广西高校中青年教师基础能力提升资助项目(2018KY0169);; 广西民族大学——2017年研究生科研创新重点资助项目(gxun-chxzs2017126);; 广西民族大学科研基金资助项目(2017MDQN002)
  • 语种:中文;
  • 页:GNCL201905030
  • 页数:10
  • CN:05
  • ISSN:50-1099/TH
  • 分类号:181-190
摘要
用共沉淀法制备Fe_3O_4纳米粒子,将3D石墨烯包裹在Fe_3O_4纳米粒子表面,先后分别用正硅酸乙酯(TEOS)和乙烯基三甲氧基硅烷(VTMO)对其表面进行乙烯基硅烷化改性,最后通过"巯基-烯"点击化学将功能单体3-巯基-1-丙磺酸钠(MPS)聚合在粒子表面制备了一种磁性功能材料Fe_3O_4@3DG@VTMO@MPS。分别采用扫描电镜(SEM)、能谱分析(EDS)、粒径分析(DLS)、红外光谱(FT-IR)及热重分析(TGA)对功能材料的结构、形貌及热稳定性等进行表征,再通过静态吸附实验研究了此功能材料对溶菌酶的吸附性能。结果表明,制备的磁性功能材料具有较高的吸附性能(最大吸附量达162.1 mg/g)和较快的吸附动力学(150 min可达吸附平衡)。拟二级动力学模型适用于描述功能材料对溶菌酶的吸附动力学行为,且功能材料对溶菌酶的吸附过程更符合Langmuir吸附模型,表明功能材料对溶菌酶的吸附为单分子层吸附。以Fe_3O_4@3DG@VTMO@MPS作为固相萃取材料,分离富集蜂蜜中的溶菌酶,并结合高效液相色谱对实际样品进行检测。
        Fe_3O_4 nanoparticles were synthesized by co-precipitation method. 3 D graphene was modified on the surface of Fe_3O_4 nanoparticles, and then covered with tetraethyl orthosilicate(TEOS) and vinyltrimethoxysilane(VTMO). Finally, the magnetic functional material Fe_3O_4@3 DG@VTMO@MPS was synthesized by the polymerization of functional monomer 3-mercapto-1-propanesulfonate(MPS) on the surface using "thiol-ene" click chemistry. The structure, morphology and thermal stability of the functional materials were characterized by scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), dynamic light scattering(DLS), Fourier transform infrared spectroscopy(FI-IR) and thermogravimetric analysis(TGA), respectively. The adsorption properties of this functional material for Lysozyme were studied by static adsorption experiments. The results show that the magnetic functional materials had nice adsorption capacity(the maximum adsorption capacity was 162.1 mg/g) and fast adsorption kinetics(the adsorption equilibrium could be reached in 150 min). The pseudo-second-order kinetic model was suitable for describing the adsorption kinetics of lysozyme on functional materials, and the adsorption process of functional materials on lysozyme was more in line with Langmuir adsorption model, indicating that adsorption is monolayer adsorption. Fe_3O_4@3 DG@VTMO@MPS as solid phase extraction materials as solid phase extraction materials could be used for separation and enrichment of lysozyme, then combined with high performance liquid chromatography(HPLC) to detect honey in actual samples.
引文
[1]Song Xinfang.Striking strictly at“indicator honey”to purify bee products market[J].Journal of Bee,2014,34(12):1(in Chinese).宋心仿.严厉打击“指标蜜”全面净化蜂产品市场[J].蜜蜂杂志,2014,34(12):1.
    [2]Mohrig W,Messner B.Lysozyme as antibacterial agent in honey and bees venom[J].Acta Biologica Et Medica Germanica,1968,21(1):85-95.
    [3]Wei Ying.The discussion of national stardard of honey[J].Food and Fermentation Industries,2015,41(10):235-239(in Chinese).魏颖.蜂蜜国家标准探讨[J].食品与发酵工业,2015,41(10):235-239.
    [4]Wang Tinxin,Liu Zhenghao,Xia Liya,et al.Determination of total lysozyme in honey with ultraviolet spectrophotometry[J].Food Science and Technology,2010,35(04):292-293(in Chinese).王庭欣,刘峥颢,夏立娅,等.紫外分光光度法测定蜂蜜中溶菌酶的含量[J].食品科技,2010,35(04):292-293.
    [5]Ding Ling,Dong Jun,Xiao Yuansheng,et al.Study on retention equation for protein in reversed phase liquid chromatography[J].Chinese Journal of Analytical Chemistry,2013,41(2):181-186(in Chinese).丁玲,董军,肖远胜,等.蛋白质的反相液相色谱保留方程研究[J].分析化学,2013,41(2):181-186.
    [6]Arakawa T,Timasheff S N.Mechanism of protein salting in and salting out by divalent cation salts:balance between hydration and salt binding[J].Biochemistry,1984,23(25):5912-5923.
    [7]Yuan Jingxiang,Wang Chaozhan,Wei Yinmao.High-capacity strong cation exchange resin based on reutilization of an inactivated immobilized enzyme and its adsorption properties for lysozyme[J].Chinese Journal of Analytical Chemistry,2016,44(12):1892-1899.袁景香,王超展,卫引茂.基于废弃固定化酶再利用的高容量强阳离子交换树脂及其对溶菌酶的吸附性能[J].分析化学,2016,44(12):1892-1899.
    [8]Dismer F,Petzold M,Hubbuch J.Effects of ionic strength and mobile phase pH on the binding orientation of lysozyme on different ion-exchange adsorbents[J].Journal of Chromatography A,2008,1194(1):11-21.
    [9]Bayramo gˇlu G,Ekici G,Be爧irli N,et al.Preparation of ion-exchange beads based on poly(methacrylic acid)brush grafted chitosan beads:Isolation of lysozyme from egg white in batch system[J].Colloids&Surfaces A Physicochemical&Engineering Aspects,2007,310(1):68-77.
    [10]mür A,Baran T,Erd9nmez D,et al.O-carboxymethyl chitosan Schiff base complexes as affinity ligands for immobilized metal-ion affinity chromatography of lysozyme[J].Journal of Chromatography A,2018,1550:21-27.
    [11]Abeyrathne E D N S,Lee H Y,Ahn D U.Egg white proteins and their potential use in food processing or as nutraceutical and pharmaceutical agents-a review[J].Poultry Science,2013,92(12):3292-3299.
    [12]Alderton G,Wabd W H,Fevold H L.Isolation of Lysozyme from egg white[J].Journal of Biological Chemistry,1945,157(1):43-58.
    [13]Zhu X,Zhang L,Fu A,et al.Efficient purification of Lysozyme from egg white by 2-mercapto-5-benzimidazolesulfonic acid modified Fe3O4/Au nanoparticles[J].Materials Science&Engineering C Materials for Biological Applications,2016,59:213-217.
    [14]Li N,Jiang H L,Wang X L,et al.Recent advances in graphene-based magnetic composites for magnetic solidphase extraction[J].Trac Trends in Analytical Chemistry,2018,102:60-74.
    [15]Xu Y,Shi G,Duan X.Self-assembled three-dimensional graphene macrostructures:synthesis and applications in supercapacitors[J].Accounts of Chemical Research,2015,48(6):1666-1675.
    [16]Tang W,Peng L,Yuan C,et al.Facile synthesis of 3Dreduced graphene oxide and its polyaniline composite for super capacitor application[J].Synthetic Metals,2015,202:140-146.
    [17]Zhong C,Wang J Z,Gao X W,et al.In situ one-step synthesis of a 3Dnanostructured germanium-graphene composite and its application in lithium-ion batteries[J].Journal of Materials Chemistry A,2013,1(36):10798-10804.
    [18]Kim N D,Li Y,Wang G,et al.Growth and transfer of seamless 3Dgraphene-nanotube hybrids[J].Nano Letters,2016,16(2):1287-1292.
    [19]Liu Xiaping,Wang Huicai,Sun Qiang,et al.Research progress of graphene and 3D graphene composites[J].Chemical Industry&Engineering Progress,2018,37(1):168-174(in Chinese).刘霞平,王会才,孙强,等.石墨烯、3D石墨烯及其复合材料的研究进展[J].化工进展,2018,37(1):168-174.
    [20]Shen Z,Ye H,Zhou C,et al.Size of graphene sheets determines the structural and mechanical properties of 3Dgraphene foams[J].Nanotechnology,2018,29(10):104001.
    [21]Kolb H C,Finn M G,Sharpless K B.Click chemistry:diverse chemical function from a few good reactions[J].Chembiochem,2001,32(35):2004-2021.
    [22]Xu Yuanhong,Xiong Xingquan,Cai Lei,et al.Thiol-ene click chemistry[J].Progress in Chemistry,2012,24(2):385-394(in Chinese).徐源鸿,熊兴泉,蔡雷,等.巯基-烯点击化学[J].化学进展,2012,24(2):385-394.
    [23]Su Xiaomeng,Li Xiaoyan,Liu Min,et al.Synthesis and characterization of core-shell magnetic molecularly polymers for solid-phase extraction of Rhodamine 6G[J].Journal of Functional Materials,2014,45(23):23080-23085(in Chinese).苏晓濛,李小燕,刘敏,等.核-壳型罗丹明6G磁性分子印迹固相萃取材料的合成与表征[J].功能材料,2014,45(23):23080-23085.
    [24]Jr W S H,Offeman R E.Preparation of graphitic oxide[J].Journal of the American Chemical Society,1958,80(6):1339-1339.
    [25]Marcano D C,Kosynkin D V,Berlin J M,et al.Improved synthesis of graphene oxide[J].ACS Nano,2010,4(8):4806-4814.
    [26]Azizian S.Kinetic models of sorption:a theoretical analysis[J].Journal of Colloid&Interface Science,2004,276(1):47-52.
    [27]Ho Y S,Mckay G.Pseudo-second order model for sorption processes[J].Process Biochemistry,1999,34(5):451-465.
    [28]Bering B P,Dubinin M M,Serpinsky V V.On thermodynamics of adsorption in micropores[J].Journal of Colloid&Interface Science,1972,38(1):185-194.
    [29]Gμggenheim E A,Adam N K.The Thermodynamics of adsorption at the surface of solutions[J].Proceedings of the Royal Society of London,1933,139(837):218-236.
    [30]Liu M,Li X Y,Li J J,et al.Synthesis of magnetic molecularly imprinted polymers for the selective separation and determination of metronidazole in cosmetic samples[J].Analytical&Bioanalytical Chemistry,2015,407(13):3875-3880.
    [31]Langmuir I.The adsorption of gases on plane surfaces of glass,mica and platinum[J].Journal of the American Chemical Society,1918,40(9):1361-1403.
    [32]Freundlich H M F.Uber die adsorption in Lasungen[J].Journal of Physical Chemistry,1906,57:385-370.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700