用户名: 密码: 验证码:
广州市PM_(2.5)污染特征及潜在贡献源区分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of the Characteristics and Potential Source Contribution of PM_(2.5) Pollution in Guangzhou
  • 作者:黄俊 ; 廖碧婷 ; 王春林 ; 邓雪娇 ; 沈子琦 ; 汤静 ; 蓝静
  • 英文作者:HUANG Jun;LIAO Biting;WANG Chunlin;DENG Xuejiao;SHEN Ziqi;TANG Jing;LAN Jing;Guangzhou Climate and Agrometeorology Center;Guangzhou Huangpu District Meteorological Bureau;Guangzhou Institute of Tropical and Marine Meteorology CMA;
  • 关键词:大气污染 ; 聚类分析 ; 传输路径 ; 潜在贡献源区 ; 广州
  • 英文关键词:air pollution;;cluster analysis;;transport pathways;;potential source contribution;;Guangzhou
  • 中文刊名:FJKS
  • 英文刊名:Environmental Science & Technology
  • 机构:广州市气候与农业气象中心;广州市黄埔区气象局;中国气象局广州热带海洋气象研究所;
  • 出版日期:2019-04-15
  • 出版单位:环境科学与技术
  • 年:2019
  • 期:v.42
  • 基金:国家重点研发计划项目(2016YFC0203305,2016YFC0201901);; 城市环境气象技术创新团队(201707);; 广东省气象局科技创新团队计划项目(201704);广东省气象局科研项目(GRMC2017M27,2016Q10)
  • 语种:中文;
  • 页:FJKS201904016
  • 页数:10
  • CN:04
  • ISSN:42-1245/X
  • 分类号:115-124
摘要
基于NCEP/NCAR全球再分析气象资料和2015-2017年PM_(2.5)浓度,利用HYSPLIT模型研究不同气流轨迹对广州PM_(2.5)浓度的影响,以及污染输送路径和潜在源区空间分布特征。结果表明:(1)广州2015-2017年PM_(2.5)平均浓度为36.5μg/m~3,逐月平均PM_(2.5)浓度1月份最高,为49.3μg/m~3,轻度污染及以上时次比例达15.66%,6月份最低,为20.8μg/m~3,无轻度及以上污染时次。(2)PM_(2.5)平均浓度在不同情景类型下的浓度高低顺序依次为:污染日>干季>清洁日>湿季,其中污染日的PM_(2.5)平均浓度是清洁日的近3倍,干季的PM_(2.5)平均浓度是湿季的1.4倍;不同情景类型下的PM_(2.5)浓度日变化特征基本都在白天时段低(16时最低),晚上时段高(21-22时最高),日变化幅度为污染日>干季>清洁日>湿季。(3)在干季,影响广州的气流轨迹路径主要有5类:东北路径、东南路径、西北路径、西南路径及偏西路径,其中第2类东南路径对广州PM_(2.5)平均浓度的贡献最高;而在湿季,影响广州的气流轨迹路径主要有4类:偏南路径、东南路径、偏北路径及西南路径,其中第3类偏北路径对广州PM_(2.5)浓度的贡献最高。(4)基于潜在源贡献因子和浓度权重轨迹分析法分析表明,广州PM_(2.5)浓度潜在源贡献较大的区域主要集中在广州东部的东莞、惠州、深圳、肇庆、中山等周边地区,该研究可为确定广州污染潜在源贡献区以及区域联防联控提供参考。
        Based on the NCEP/NCAR global reanalysis of meteorological data and the PM_(2.5) concentration during 2015-2017, the influence of different airflow trajectories on the concentration of PM_(2.5) in Guangzhou, and the spatial distribution characteristics of the transport path and potential source area were studied by using the HYSPLIT model. The results show that average concentration of PM_(2.5) in Guangzhou during 2015-2017 was 36.5μg/m~3, and the monthly average PM_(2.5) concentration was the highest in January, which was 49.3μg/m~3. The proportion of mild pollution and above time was 15.66%, and the lowest in June was 20.8μg/m~3, no mild and above pollution times. The order of the average concentration of the average concentration of PM_(2.5) under different situational types is in order of pollution day > dry season > clean day > wet season. The average concentration of PM_(2.5) in the day of pollution is nearly 3 times that of the cleaning day, and the average concentration of PM_(2.5) in dry season is 1.4 times that of the wet season. The diurnal variation characteristics of PM_(2.5) concentration under different situational types were basically low in the daytime(the lowest at 16:00) and high in the evening(the highest at 21:00-22:00), and the diurnal variation ranges from the pollution day to the dry season, the clean day and the wet season. In the dry season, there are 5 main types of airflow path influencing Guangzhou including northeast route, southeast path, northwest path, south-west path and westward path, of which the southeast routes contribute the highest to the average concentration of PM_(2.5) in Guangzhou. In the wet season, there are 4 main routes to influence the trajectory of Guangzhou: the south path, the southeast path, the north path and the south-west path, of which the northward route has the highest contribution to the concentration of the Guangzhou PM_(2.5). Based on WPSCF and WCWT analysis, the region of the potential source of PM_(2.5) concentration is mainly concentrated in Dongguan, Huizhou, Shenzhen, Zhaoqing, Zhongshan and other surrounding areas in eastern Guangzhou. This study can provide a reference for determining the potential source area of Guangzhou and the joint control of regional joint defense.
引文
[1]戚丹青,谭季青,孙长.一次强沙尘暴长距离输送的数值模拟研究[J].浙江大学学报:理学版,2006,33(2):216-222.Qi Danqing,Tan Jiqing,Sun Chang.A numerical simulation about the long distance transportation of a dust storm event[J].Journal of Zhejiang University:Science Edition,2006,33(2):216-222.
    [2]薛文博,付飞,王金南,等.中国PM2.5跨区域传输特征数值模拟研究[J].中国环境科学,2014,34(6):1361-1368.Xue Wenbo,Fu Fei,Wang Jinnan,et al.Numerical study on the characteristics of regional transport of PM2.5in China[J].China Environmental Science,2014,34(6):1361-1368.
    [3]王芳,陈东升,程水源,等.基于气流轨迹聚类的大气污染输送影响[J].环境科学研究,2009,22(6):637-642.Wang Fang,Chen Dongsheng,Cheng Shuiyuan,et al.Impacts of air pollutant transport based on air trajectory clustering[J].Research of Environmental Science,2009,22(6):637-642.
    [4]Lin S,Yuan Z,Fung J C H,et al.A comparison of HYSPLIT backward trajectories generated from two GDASdatasets[J].Science of the Total Environment,2015,506/507:527-537.
    [5]王郭臣,王珏,信玉洁,等.天津PM10和NO2输送路径及潜在源区研究[J].中国环境科学,2014,34(12):3009-3016.Wang Guochen,Wang Jue,Xin Yujie,et al.Transportation pathways and potential source areas of PM10and NO2in Tianjin[J].China Environmental Science,2014,34(12):3009-3016.
    [6]赵恒,王体健,江飞,等.利用后向轨迹模式研究TRACE-P期间香港大气污染物的来源[J].热带气象学报,2009,25(2):181-186.Zhao Heng,Wang Tijian,Jiang Fei,et al.Investigation into the source of air pollutants to Hong Kong by using backward trajectory method during the TRACE-P Campaign[J].Journal of Tropical Meteorology,2009,25(2):181-186.
    [7]Rozwadowska A,Zieliński T,Petelski T,et al.Cluster analysis of the impact of air back-trajectories on aerosol optical properties at Hornsund,Spitsbergen[J].Atmospheric Chemistry and Physics,2010,10:877-893.
    [8]Han Y J,Holsen T M,Hopke P K.Estimation of source locations of total gaseous mercury measured in New York State using trajectory based models[J].Atmospheric Environment,2007,41(28):6033-6047.
    [9]Wang Y Q,Zhang X Y,Draxler R R.TrajStat:GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data[J].Environmental Modeling&Software,2009,24(8):938-939.
    [10]Zhao M,Huang Z,Qiao T,et al.Chemical characterization,the transport pathways and potential sources of PM2.5in Shanghai:seasonal variations[J].Atmospheric Research,2015,158:66-78.
    [11]高志强,刘明,陈来国,等.广东南岭大气背景点气态元素汞含量变化特征[J].中国环境科学,2016,36(2):342-348.Gao Zhiqiang,Liu Ming,Chen Laiguo,et al.Variation characteristics of gaseous elemental mercury at Nanling Mountain background station in Guangdong[J].China Environmental Science,2016,36(2):342-348.
    [12]任传斌,吴立新,张媛媛,等.北京城区PM2.5输送途径与潜在源区贡献的四季差异分析[J].中国环境科学,2016,36(9):2591-2598.Ren Chuanbin,Wu Lixin,Zhang Yuanyuan,et al.Analysis of the seasonal differences of transport pathways and potential source-zones of Beijing urban PM2.5[J].China Environmental Science,2016,36(9):2591-2598.
    [13]Zhang Y Y,Lang J L,Cheng S Y,et al.Chemical composition and sources of PM1and PM2.5in Beijing in autumn[J].Science of the Total Environment,2018,630:72.
    [14]王爱平,朱彬,银燕,等.黄山顶夏季气溶胶数浓度特征及其输送潜在源区[J].中国环境科学,2014,34(4):852-861.Wang Aiping,Zhu Bin,Yin Yan,et al.Aerosol number concentration properties and potential sources areas transporting to the top of Mountain Huangshan in summer[J].China Environmental Science,2014,34(4):852-861.
    [15]Wang H,Zhu B,Shen L,et al.Number size distribution of aerosols at Mt.Huang and Nanjing in the Yangtze River Delta,China:effects of air masses and characteristics of new particle formation[J].Atmospheric Research,2014,150(1):42-56.
    [16]王茜.利用轨迹模式研究上海大气污染的输送来源[J].环境科学研究,2013,26(4):357-363.Wang Qian.Study of air pollution transportation source in Shanghai using trajectory model[J].Research of Environmental Science,2013,26(4):357-363.
    [17]李莉,蔡鋆琳,周敏.2013年12月中国中东部地区严重灰霾期间上海市颗粒物的输送途径及潜在源区贡献分析[J].环境科学,2015,36(7):2327-2336.Li Li,Cai Junlin,Zhou Min.Potential source contribution analysis of the particulate matters in Shanghai during the heavy haze episode in eastern and middle China in December,2013[J].Environmental Science,2015,36(7):2327-2336.
    [18]刘娜,余晔,陈晋北,等.兰州春季沙尘过程PM10输送路径及其潜在源区[J].大气科学学报,2012,35(4):477-486.Liu Na,Yu Ye,Chen Jinbei,et al.A study on potential sources and transportation pathways of PM10in spring in Lanzhou[J].Transactions of Atmospheric Science,2012,35(4):477-486.
    [19]严晓瑜,缑晓辉,武万里,等.银川地区大气颗粒物输送路径及潜在源区分析[J].环境科学学报,2018,38(5):1727-1738.Yan Xiaoyu,Gou Xiaohui,Wu Wanli,et al.Analysis of atmospheric particulate transport path and potential source area in Yinchuan[J].Acta Scientiae Circumstantiae,2018,38(5):1727-1738.
    [20]李正,张昊,叶辉,等.杭州市典型雾霾期污染特征及污染源的HYSPLIT模型分析[J].环境科学学报,2018,38(5):1717-1726.Li Zheng,Zhang Hao,Ye Hui,et al.Characteristics of air pollution during typical haze periods and HYSPLIT model analysis of its source in Hangzhou[J].Acta Scientiae Circumstantiae,2018,38(5):1717-1726.
    [21]齐孟姚,王丽涛,张城瑜,等.邯郸市黑碳气溶胶浓度变化及影响因素分析[J].环境科学学报,2018,38(5):1751-1758.Qi Mengyao,Wang Litao,Zhang Chengyu,et al.Variation of black carbon aerosol concentration and its influencing factors in Handan City,Hebei Province[J].Acta Scientiae Circumstantiae,2018,38(5):1751-1758.
    [22]邓雪娇,黄健,吴兑,等.深圳地区典型大气污染过程分析[J].中国环境科学,2006,26(S):7-11.Deng Xujiao,Huang Jian,Wu Dui,et al.Analyses on the typical atmospheric pollution processes in Shenzhen area[J].China Environmental Science,2006,26(S):7-11.
    [23]王世强,黎伟标,邓雪娇,等.广州地区大气污染物输送通道的特征[J].中国环境科学,2015,35(10):2883-2890.Wang Shiqiang,Li Weibiao,Deng Xuejiao,et al.Characteristics of air pollutant transport channels in Guangzhou region[J].China Environmental Science,2015,35(10):2883-2890.
    [24]李婷苑,范绍佳,邓雪娇,等.广州地区PM2.5区域输送影响分析[J].中国科学院大学学报,2014,31(3):403-409.Li Tingyuan,Fan Shaojia,Deng Xuejiao,et al.Study on the regional transported effect of PM2.5in Guangzhou area[J].Journal of University of Chinese Academy of Sciences,2014,31(3):403-409.
    [25]Sirois A,Bottenhein J W.Use of backward trajectories to interpret the 5-year record of PAN and O3ambient air concentrations at Kejimkujik National Park,Nova Scotia[J].Journal of Geophysical Research,1995,100(D2):2867-2881.
    [26]Draxler R R,Hess G D.An overview of the HYSPLIT-4modeling system for trajectories[J].Australian Meteorological Magazine,1998,47(4):295-308.
    [27]Begum B A,Kim E,Jeong C H,et al.Evaluation of the potential source contribution function using the 2002 Quebec forest fire episode[J].Atmospheric Environment,2005,39(20):3719-3724.
    [28]Polissar A V,Hopke P K.Harris J M.Source regions for atmospheric aerosol measured at Barrow,Alaska[J].Environmental Science and Technology,2001,35(21):4214-4226.
    [29]Xu X,Akhtar U S.Identification of potential regional sources of atmospheric total gaseous mercury in Windsor,Ontario,Canada using hybrid receptor modeling[J].Atmospheric Chemistry and Physics,2010,10(15):7073-7083.
    [30]Hsu Y K,Holsen T M,Hopke P K.Comparison of hybrid receptor models to locate PCB sources in Chicago[J].Atmospheric Environment,2003,37(4):545-562.
    [31]Liu N,Ye Y,He J,et al.Integrated modeling of urban-scale pollutant transport:application in a semi-arid urban valley,northwestern China[J].Atmospheric Pollution Research,2013,4(3):306-314.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700