用户名: 密码: 验证码:
青藏公路冻土路基阴阳坡热效应研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation of thermal effect of sunny-shady slope of permafrost embankment of Qinghai-Tibet highway
  • 作者:毕贵权 ; 杨凯飞 ; 穆彦虎 ; 陈涛
  • 英文作者:BI Gui-quan;YANG Kai-fei;MU Yan-hu;CHEN Tao;College of Civil Engineering,Lanzhou Univ. of Tech.;State Key Laboratory of Frozen Soil Engineering, Environmental and Engineering Research Institute of Cold and Arid Regions, Chinese Academy of Sciences;
  • 关键词:阴阳坡效应 ; 年平均气温 ; 高填方路基 ; 冻融过程 ; 人为冻土上限 ; 多年冻土
  • 英文关键词:sunny-shady slope effect;;mean annual air temperature;;high-fill embankment;;freezing-thawing process;;artificial upper limit of frozen soil;;permafrost soil
  • 中文刊名:GSGY
  • 英文刊名:Journal of Lanzhou University of Technology
  • 机构:兰州理工大学土木工程学院;中国科学院寒区旱区环境与工程研究所冻土国家重点实验室;
  • 出版日期:2019-04-25 18:22
  • 出版单位:兰州理工大学学报
  • 年:2019
  • 期:v.45;No.196
  • 基金:国家自然科学基金(41630636,51568043);; 冻土工程国家重点实验室开放基金(SKLFSE201008)
  • 语种:中文;
  • 页:GSGY201902023
  • 页数:8
  • CN:02
  • ISSN:62-1180/N
  • 分类号:141-148
摘要
青藏公路多年冻土路段的阴阳坡现象会引发路基及下伏冻土地基热状况不对称分布,影响长期稳定性.为此,基于实测坡面温度数据,开展不同年平均气温和路基高度条件下冻土路基地温场分布及演化规律的模拟.结果表明,年平均气温-3℃下阴坡冻结指数约为阳坡的2倍,融化指数约为阳坡的0.83倍.路基修筑后,阴坡一侧路基下部人为上限均有一定抬升.此后,在气候变暖及沥青路面强烈吸热效应作用下,路基左右路肩下部人为上限不断下降,其中高填方路基人为上限下降速率相对较快.阴阳坡效应作用下,东西路基下部人为冻土上限呈左高右低的趋势,下伏土体温度同样为左高右低.高填方路基下伏冻土层地温分布的不对称较同期的普通填方路基显著.
        The phenomenon of sunny-shady slope in the permafrost road section of Qinghai Tibet highway, inducing asymmetrical heat distribution in embankment proper and beneath-buried permafrost subgrade and affecting long-term stability of the embankment. Therefore, based on field measured temperature of embankment slopes, the temperature field distribution and evolution regularity of permafrost embankment with different height at different annual mean air temperature were investigated simulatively. The result showed that the freezing index beneath shady slope would be about 2 times of that beneath sunny slope, while the thawing index beneath shady slope would be about 0.83 times of that beneath sunny slope. After completion of embankment construction, the artificial upper limit of permafrost soil beneath shady slope would have a certain uplift at lower part of embankment. Then, due to the climate warming and significant heat absorption of asphalt pavement, the artificial upper limit of permafrost soil would continuously decline both beneath sunny and shady slopes, the decline rate of the artificial upper limit of permafrost soil would be relatively greater beneath high-filled embankment. Due to the sunny-shady slope effect, the artificial upper limit of permafrost soil at lower part of west-east oriented embankment would exhibit a trend that left high right low and the temperature of beneath-buried soil would behave just the same. The asymmetrical distribution of temperature field of high-filled embankment would be more obvious than that of ordinary embankment in the same period.
引文
[1] 马巍,牛富俊,穆彦虎.青藏高原重大冻土工程的基础研究 [J].地球科学进展,2012,27(11):1185-1191.
    [2] 杨成松,何平,程国栋,等.冻土热融下沉研究的现状和进展 [J].工程地质学报,2004,12(增刊1):147-150.
    [3] 胡泽勇,程国栋,谷良雷,等.青藏铁路路基表面太阳总辐射和温度反演方法 [J].地球科学进展,2006,21(12):1304-1313.
    [4] 汪双杰,霍明,周文锦.青藏公路多年冻土路基病害 [J].公路,2004(5):22-26.
    [5] 穆彦虎,马巍,牛富俊,等.青藏铁路多年冻土区普通路基热状况监测分析 [J].冰川冻土,2014,36(4):953-961.
    [6] 王芳.博牙高速公路岛状多年冻土地区路基沉降处治技术研究 [D].长安:长安大学,2011.
    [7] 田亚护,张青龙,穆彦虎,等.高温冻土区填土路基的地基融化固结变形分析 [J].中国铁道科学,2014,5(3):1-7.
    [8] 胡泽勇,钱泽雨,程国栋,等.太阳总辐射对青藏铁路路基表面热状况的影响 [J].冰川冻土,2002,24(2):121-128.
    [9] 王可丽,程国栋,江灏,等.青藏铁路沿线地表和路基表面热力学模式(Ⅱ):无云大气条件下模拟试验结果分析[J].冰川冻土,2004,26(2):171-176.
    [10] 俞祁浩,程国栋,何乃武,等.不同路面和幅宽条件下冻土路基传热过程研究 [J].自然科学进展,2006,16(11):1482-1486.
    [11] ZHANG Mingyi,ZHANG Jianming,LAI Yuanming.Numerical analysis for critical height of railway embankment in permafrost regions of Qinghai-Tibetan Plateau [J].Cold Regions Science and Technology,2005,41(2):111-120.
    [12] 张明义,张建明,赖远明.青藏高原多年冻土区铁路路堤临界高度数值计算分析 [J].冰川冻土,2004,26(3):312-318.
    [13] 王铁行,窦明健.多年冻土地区路堤热差异分析 [J].煤田与地质,2004,32(1):45-47.
    [14] 朱林楠.高原冻土区不同下垫层面的附面层研究 [J].冰川冻土,1988,10(1):8-14.
    [15] 易鑫,喻文兵,陈琳,等.边界条件对多年冻土路基热稳定性的影响分析 [J].冰川冻土,2014,36(2):369-375.
    [16] 江灏,吴青柏,王可丽,等.青藏铁路沿线地表和路基表面热力学模式(Ⅲ):参数化方案 [J].冰川冻土,2005,27(5):680-685.
    [17] 江灏,程国栋,王可丽.青藏高原地表温度的比较分析 [J].地球物理学报,2006,49(2):391-397.
    [18] 胡达,喻文兵,易鑫,等.青藏工程走廊楚玛尔河高平原地区路基边界温度特征 [J].冰川冻土,2016,38(5):1332-1339.
    [19] COMINI G,GUIDICE S,LEWIS R W,et al.Finite element solution of nonlinear heat conduction problems with special reference to phase change [J].Inter J for Numerical Methods in Engineering,1974,8(6):613-624.
    [20] 郭宽良,孔祥谦,陈善年.计算传热学 [M].合肥:中国科学技术大学出版社,1988.
    [21] 徐学祖,邓友生.冻土中水分迁移的实验研究 [M].北京:科学出版社,1991.
    [22] 丑亚玲.多年冻土区路基阴阳坡效应及纵向裂缝机理研究 [D].兰州:中国科学院寒区旱区环境与工程研究所,2008.
    [23] 穆彦虎,李国玉,俞祁浩,等.热管措施作用下锥柱式基础传热过程及冷却降温效果预测研究 [J].冰川冻土,2014,36(1):106-117.
    [24] 秦大河.中国西部环境演变评估综合报告 [M].北京:科学出版社,2002:55-60.
    [25] 赖远明.构筑物与冻土地基热、力耦合作用的动力学过程 [R].兰州:中国科学院寒区旱区环境与工程研究所,2016:60-62.
    [26] 盛煜,马巍,温智.多年冻土区铁路路基阴阳坡面热状况差异分析 [J].岩石力学与工程学报,2005,24(17):3197-3201.
    [27] WU Qingbai,LIU Yongzhi,HU Zeyong.The thermal effect of differential solar exposure on embankments along the Qinghai-Tibet Railway [J].Cold Regions Science and Technology,2011,66(1):30-38.
    [28] WU Ziwang,ZHU Linnan,GUO Xinming,et al.Critical height of embankment in permafrost regions along the Qinghai-Kangding Highway [J].Journal of Glaciology and Geocryology,1998,20(1):36-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700