用户名: 密码: 验证码:
北京城市森林冠层结构对夏季林内舒适度的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Canopy structures and degree of comfort with urban forests of Beijing in summer
  • 作者:金桂香 ; 刘海轩 ; 卢泽洋 ; 吴鞠 ; 许丽娟 ; 孙广鹏 ; 李苹 ; 李军 ; 徐程扬
  • 英文作者:JIN Guixiang;LIU Haixuan;LU Zeyang;WU Ju;XU Lijuan;SUN Guangpeng;LI Ping;LI Jun;XU Chengyang;College of Forestry, Beijing Forestry University;Academy of Forest Inventory and Planning, National Forestry and Grassland Administration;
  • 关键词:城市森林 ; 降温效应 ; 冠层结构 ; 叶面积指数 ; 舒适度
  • 英文关键词:urban forests;;cooling effect;;canopy structures;;leaf area index;;comfort degree
  • 中文刊名:ZJLX
  • 英文刊名:Journal of Zhejiang A & F University
  • 机构:北京林业大学林学院;国家林业和草原局调查规划设计院;
  • 出版日期:2019-05-28 16:24
  • 出版单位:浙江农林大学学报
  • 年:2019
  • 期:v.36;No.160
  • 基金:国家林业公益性行业科研专项(20140430102)
  • 语种:中文;
  • 页:ZJLX201903016
  • 页数:7
  • CN:03
  • ISSN:33-1370/S
  • 分类号:125-131
摘要
于2013-2016年7-8月,利用小气象站观测北京城市森林小气候特征,研究了城市森林冠层结构对人体舒适度的影响。结果表明:①叶面积指数(ILA)(r=-0.314, P=0.002),平均叶倾角(AMT)(r=0.472, P<0.001),冠层厚度(HCT)(r=0.458, P<0.001),冠下高(HCB)(r=0.692, P<0.001)和冠高比(RCT)(r=0.254, P=0.014)与林下舒适度(S)显著或极显著相关,其中平均叶倾角、冠层厚度、冠下高与林下舒适度相关性较高;叶面积指数(r=-0.356, P=0.001),冠高比(r=0.433, P<0.001)和冠层通透度(PC)(r=0.738, P<0.001)与舒适变化强度(dS)极显著相关,其中冠高比和冠层通透度与舒适变化强度的相关性较高。②利于提高舒适度的平均叶倾角、冠层厚度和冠下高的取值区间分别为27.48°±1.67°,(7.40±0.09) m和(2.67±0.06) m;使林内舒适度优于林外的冠高比和冠层通透度取值区间分别为0.72±0.003和6.51%±0.884%。③平均叶倾角和冠下高的协同作用对林下舒适度的解释程度为51.1%;冠高比和冠层通透度的协同作用对舒适变化强度的解释程度为55.5%。林内舒适度受多个结构指标共同影响,单一指标无法准确预测林内舒适度,如何构建与林内舒适度拟合优度较高的综合结构指数还有待进一步研究。图5表5参19
        To identify the major structural factors affecting the degree of comfort so as to optimize the structure of urban forests, the effects of canopy structures on the degree of comfort were studied. Microclimate characteristics in urban forests of Beijing were observed with mini weather stations between July and August from 2013-2016, and correlation analysis and regression analysis were used to evaluate the data. Results indicated that(1) human comfort(S) was significantly or highly significantly correlated to leaf area index(ILA)(r=-0.314,P=0.002), mean tilt angle(AMT)(r=0.472, P<0.001), canopy thickness(HCT)(r=0.458, P<0.001), height of canopy bottom(HCB)(r =0.692, P<0.001), and ratio of canopy thickness to tree height(RCT)(r =0.254, P =0.014). The intensity of comfort(dS) was highly significantly correlated to ILA(r=-0.356, P=0.001), RCT(r=0.433, P<0.001), and permeability of canopy(PC)(r =0.738, P <0.001).(2)The appropriate ranges to improve comfort were 27.48° ±1.67° for AMT,(7.40 ± 0.09) m for HCT, and(2.67 ± 0.06) m for HCB. To make comfort inside the forest better than outside, the appropriate range of RCTwas 0.72 ± 0.003 and for PCwas6.51%±0.884%.(3) By regression analysis, the interpretation of AMTand HCBto S was 51.1%; whereas, the interpretation of RCTand PCto dSwas 55.5%. The degree of comfort of urban forest is affected by multiple structural indicators. Single structure cannot accurately predict the comfort degree in the forest. How to construct the comprehensive structure index fitting highly to the comfort degree in the forest remains to be further studied.[Ch, 5 fig. 5 tab. 19 ref.]
引文
[1]WANG Yupeng, BERARDIC U, AKBARI H. Comparing the effects of urban heat island mitigation strategies for Toronto, Canada[J]. Energy Build, 2016, 114:2-19.
    [2]刘鑫,张金池,谢德晋,等.南京近郊麻栎林冠层蒸腾时间变化及降温效应[J].浙江农林大学学报, 2015, 32(4):529-536.LIU Xin, ZHANG Jinchi, XIE Dejin, et al. Temporal variation for canopy transpiration and its cooling properties in a Quercus acutissima forest of suburban Nanjing[J]. J Zhejiang A&F Univ, 2015, 32(4):529-536.
    [3]贾宝全,仇宽彪.北京市平原百万亩大造林工程降温效应及其价值的遥感分析[J].生态学报, 2016, 37(3):726-735.JIA Baoquan, QIU Kuanbiao. The cooling effect of plain afforestation in the Beijing Project and its remote sensingbased valuation[J]. Acta Ecol Sin, 2016, 37(3):726-735.
    [4]WU Zhifeng, CHEN Liding. Optimizing the spatial arrangement of trees in residential neighborhoods for better cooling effects:integrating modeling with in-situ measurements[J]. Landscape Urban Plann, 2017, 167:463-472.
    [5]KLEMMA W, HEUSINKVELD B G, LENZHOLZER S, et al. Street greenery and its physical and psychological impact on thermal comfort[J]. Landscape Urban Plann, 2015, 138:87-98.
    [6]RAHMAN M A, ARMSON D, ENNOS A R. A comparison of the growth and cooling effectiveness of five commonly planted urban tree species[J]. Urban Ecosyst, 2015, 18(2):371-389.
    [7]苑征.北京部分绿地群落温湿度状况及对人体舒适度影响[D].北京:北京林业大学, 2011.YUAN Zheng. The Research on the Temperature and Humidity Condition and the Comfort Index in the Plant Communities of Beijing[D]. Beijing:Beijing Forestry University, 2011.
    [8]潘建彬,李树华.北京城市公园绿地热舒适度空间格局特征研究[J].中国园林, 2015, 31(10):91-95.PAN Jianbin, LI Shuhua. Study on spatial pattern of the function of thermal comfort improvement on Beijing city parks[J]. Chin Landscape Architec, 2015, 31(10):91-95.
    [9]刘海轩,金桂香,吴鞠,等.林分规模与结构对北京城市森林夏季温湿效应的影响[J].北京林业大学学报, 2015,37(10):31-40.LIU Haixuan, JIN Guixiang, WU Ju, et al. Effects of scale and structure of urban forest in lowering air temperature and increasing humidity in Beijing[J]. J Beijing For Univ, 2015, 37(10):31-40.
    [10]齐石茗月.绿地对建筑外热环境特征及人体舒适度的影响[D].北京:北京林业大学, 2016.QI Shimingyue. The Influence of Green Space to External of Buildings’ Thermal Environmental Characteristics and Human Comfort[D]. Beijing:Beijing Forestry University, 2016.
    [11]贾宝全,马明娟.辽宁抚顺近10年来市域热场与植被变化分析[J].遥感技术与应用, 2012, 27(2):256-264.JIA Baoquan, MA Mingjuan. The variation analysis of surface heat status and vegetation index of Fushun city in recent 10 years[J]. Remote Sens Technol Appl, 2012, 27(2):256-264.
    [12]黄良美,黄玉源,黎桦,等.南宁市植物群落结构特征与局地小气候效应关系分析[J].广西植物, 2008, 28(2):211-217.HUANG Liangmei, HUANG Yuyuan, LI Hua, et al. Analysis on the relation between the structural characteristics of plant communities and the microclimate effects in Nanning City, China[J]. Guihaia, 2008, 28(2):211-217.
    [13]郑有飞,尹继福,吴荣军,等.热气候指数在人体舒适度预报中的适用性[J].应用气象学报, 2010, 21(6):709-715.ZHENG Youfei, YIN Jifu, WU Rongjun, et al. Applicability of universal thermal climate index to thermal comfort forecast[J]. J Appl Meteorol Sci, 2010, 21(6):709-715.
    [14]蔺银顶,韩学武,武小刚,等.城市绿地空间结构对绿地生态场的影响[J].生态学报, 2006, 26(10):3340-3346.LIN Yinding, HAN Xuewu, WU Xiaogang, et al. Ecological field characteristic of green land based on urban green space structure[J]. Acta Ecol Sin, 2006, 26(10):3340-3346.
    [15]龚岚.北京城区典型城市森林结构特点分析[D].北京:北京林业大学, 2015.GONG Lan. Analysis of Characteristics of Typical Urban Forest Structure in Urbanized District of Beijing[D].Beijing:Beijing Forestry University, 2015.
    [16]彭保发,石忆邵,王贺封,等.城市热岛效应的影响机理及其作用规律:以上海市为例[J].地理学报, 2013, 68(11):1461-1471.PENG Baofa, SHI Yinshao, WANG Hefeng, et al. The impacting mechanism and laws of function of urban heat islands effect:a case study of Shanghai[J]. Acta Geogr Sin, 2013, 68(11):1461-1471.
    [17]CONNORS J P, GALLETTI C S, CHOW W T L. Landscape configuration and urban heat island effects:assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona[J]. Landscape Ecol, 2013, 28(2):271-283.
    [18]应天玉,李明泽,范文义,等.基于GIS技术的城市森林与热岛效应的分析[J].东北林业大学学报, 2010, 38(8):63-67, 101.YING Tianyu, LI Mingze, FAN Wenyi, et al. Analysis of urban forests and heat island effect based on GIS[J]. J Northeast For Univ, 2010, 38(8):63-67, 101.
    [19]丁绍刚,朱嫣然.基于层次分析法与模糊综合评价法的医院户外环境综合评价体系构建[J].浙江农林大学学报, 2017, 34(6):1104-1112.DING Shaogang, ZHU Yanran. Constructing a synthetic evaluation system of hospital out-door environment based on analytic hierarchy process and fuzzy synthetic evaluation[J]. J Zhejiang A&F Univ, 2017, 34(6):1104-1112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700