用户名: 密码: 验证码:
湖北红椿天然种群小叶表型性状变异研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on variation of leaflet phenotypic traits of natural populations of Toona ciliata in Hubei Province
  • 作者:汪洋 ; 陈文学 ; 明安觉 ; 雍军 ; 宋丛文 ; 付秋生
  • 英文作者:WANG Yang;CHEN Wenxue;MING Anjue;YONG Jun;SONG Congwen;FU Qiusheng;Hubei Ecology Polytechnic College;Zhushan Forestry Bureau;Zhushan Land Resources Bureau;
  • 关键词:红椿 ; 湖北 ; 天然种群 ; 小叶表型性状 ; 表型变异
  • 英文关键词:Toona ciliata Roem.;;Hubei Province;;natural population;;leaflet phenotypic traits;;phenotypic variation
  • 中文刊名:ZWZY
  • 英文刊名:Journal of Plant Resources and Environment
  • 机构:湖北生态工程职业技术学院;竹山县林业局;竹山县国土资源局;
  • 出版日期:2019-05-25
  • 出版单位:植物资源与环境学报
  • 年:2019
  • 期:v.28
  • 基金:湖北省科学技术厅公益性研究项目(40 2012DBA40001);; 湖北省教育厅科研项目(B20160555)
  • 语种:中文;
  • 页:ZWZY201902013
  • 页数:10
  • CN:02
  • ISSN:32-1339/S
  • 分类号:98-107
摘要
为揭示湖北红椿(Toona ciliata Roem.)种群间及种群内小叶表型性状的变异规律,对湖北16个红椿天然种群的10个小叶表型性状进行了比较;在此基础上,对各小叶表型性状进行了巢式方差分析、多重比较、变异系数分析、表型分化分析、相关性分析和聚类分析。结果表明:红椿10个小叶表型性状在种群间存在显著(P<0.05)或极显著(P<0.01)差异。红椿种群内小叶表型性状变异系数的均值为12.13%,变化范围为9.32%~17.59%。红椿种群间小叶表型性状表型分化系数的均值为80.73%,说明红椿小叶表型性状变异主要来源于种群间。相关性分析结果显示:红椿小叶长、小叶柄长、小叶宽、宽基距、脉左宽和小叶柄长小叶长比间的相关性总体上较高,小叶表型性状与经度、无霜期和年日照时数的相关性较高。聚类分析结果显示:在遗传距离3.892处,通山九宫山(P13)种群与黄石黄荆山(P14)种群聚为一类,其他14个种群聚为另一类;在遗传距离2.018处,后一类中来凤三寨坪(P4)种群和崇阳庙圃(P12)种群聚为一个亚类,其他12个种群聚为另一个亚类。说明红椿小叶表型性状变异为局部区域化变异和连续变异以及鄂西南与鄂东南种群间的随机变异。Mantel检验结果表明:湖北红椿种群小叶表型性状变异无明显地理隔离模式。研究结果显示:对红椿进行种质资源保护、遗传改良和建立种质资源收集圃时,应尽量增加不同种群以及变异较丰富的种群内个体的取样量。
        In order to reveal the variation law of leaflet phenotypic traits of Toona ciliata Roem. among populations and within population in Hubei Province, 10 leaflet phenotypic traits of 16 natural populations of T. ciliata in Hubei Province were compared. On the basis, nested variance analysis, multiple comparison, coefficient of variation analysis, phenotypic differentiation analysis, correlation analysis, and cluster analysis were conducted on each leaflet phenotypic trait. The results show that there are significant(P<0.05) or extremely significant(P<0.01) differences in 10 leaflet phenotypic traits of T. ciliata among populations. Mean of coefficients of variation of leaflet phenotypic traits within population is 12.13%, with a range of 9.32%-17.59%. Mean of phenotypic differentiation coefficients of leaflet phenotypic traits among populations is 80.73%, indicating that the variation of leaflet phenotypic traits of T. ciliata is mainly among populations. The correlation analysis result shows that the correlations of leaflet length, leaflet petiole length, leaflet width, length between the maximum width and leaflet base, width between left blade edge and midrib, and ratio of leaflet petiole length to leaflet length are relatively high in general, and correlations of leaflet phenotypic traits with longitude, frostless period, and annual sunshine hours are relatively high. The cluster analysis result shows that at genetic distance of 3.892, populations of Jiugongshan of Tongshan(P13) and Huangjingshan of Huangshi(P14) are clustered into one group, and other 14 populations are clustered into another group; at genetic distance of 2.018, populations of Sanzhaiping of Laifeng(P4) and Miaopu of Chongyang(P12) in the latter group are clustered into one sub-group, and other 12 populations are clustered into another sub-group. This indicates that the variation of leaflet phenotypic traits of T. ciliata covers regional variation and continuous variation, and random variation between populations in Southwest Hubei and Southeast Hubei. The Mantel test result shows that the variation of leaflet phenotypic traits of T. ciliata populations in Hubei Province doesn't have an obvious geographical isolation pattern. It is suggested that in germplasm protection, genetic improvement, and establishment of germplasm nursery of T. ciliata, sampling numbers of different populations and individuals in populations with abundant variation should be increased as high as possibe.
引文
[1] PIGLIUCCI M,MURREN C J,SCHLICHTING C D.Phenotypic plasticity and evolution by genetic assimilation[J].The Journal of Experimental Biology,2006,209(12):2362-2367.
    [2] 贾春红,张利,魏晓,等.川西地区毛叶木姜子的表型多样性研究[J].林业科学研究,2015,28(6):844-850.
    [3] 魏宗贤,宋满珍,牛艳丽,等.庐山地区野生藤本植物区系与生活型[J].浙江农林大学学报,2013,30(4):505-510.
    [4] 曾杰,郑海水,甘四明,等.广西西南桦天然居群的表型变异[J].林业科学,2005,41(2):59-65.
    [5] JAMES E A,BROWN A J.Morphological and genetic variation in the endangered Victorian endemic grass Agrostis adamsonii Vickery (Poaceae)[J].Australian Journal of Botany,2000,48(3):383-395.
    [6] 尚帅斌,郭俊杰,王春胜,等.海南岛青梅天然居群表型变异[J].林业科学,2015,51(2):154-162.
    [7] 柳江群,尹明宇,左丝雨,等.长柄扁桃天然种群表型变异[J].植物生态学报,2017,41(10):1091-1102.
    [8] 邓荣华,高瑞如,刘后鑫,等.自然干旱梯度下的酸枣表型变异[J].生态学报,2016,36(10):2954-2961.
    [9] 中国科学院中国植物志编辑委员会.中国植物志:第四十三卷第三分册[M].北京:科学出版社,1997:36-37.
    [10] 吴际友,程勇,王旭军,等.红椿无性系嫩枝扦插繁殖试验[J].湖南林业科技,2011,38(4):5-7,60.
    [11] 于永福.中国野生植物保护工作的里程碑——《国家重点保护野生植物名录(第一批)》出台[J].植物杂志,1999(4):3-11.
    [12] MORETTI B D S,NETO A E F,BENATTI B P,et al.Characterization of micronutrient deficiency in Australian red cedar (Toona ciliata M.Roem.var.australis)[J].International Journal of Forestry Research,2012:587094.
    [13] 胡方洁,张健,杨万勤,等.Pb胁迫对红椿(Toona ciliata Roem.)生长发育及Pb富集特性的影响[J].农业环境科学学报,2012,31(2):284-291.
    [14] 吴际友,李志辉,刘球,等.干旱胁迫对红椿无性系幼苗叶片相对含水量和叶绿素含量的影响[J].中国农学通报,2013,29(4):19-22.
    [15] 刘球,陈彩霞,吴际友,等.红椿无性系幼苗叶片抗氧化酶指标对干旱胁迫的响应[J].中南林业科技大学学报,2013,33(11):73-76,82.
    [16] 龙汉利,冯毅,向青,等.四川盆周山地红椿生长特性研究[J].四川林业科技,2011,32(3):37-41,68.
    [17] 宋鹏,张懿琳,辜云杰,等.红椿半同胞家系苗期特性分析[J].浙江林业科技,2013,33(4):74-78.
    [18] 李晓清,贾廷彬,张炜,等.红椿人工林密度试验研究[J].四川林业科技,2013,34(1):33-36.
    [19] 汪洋,冷艳芝,苏长江,等.恩施天然红椿种群结构及空间分布格局[J].浙江农林大学学报,2016,33(1):17-25.
    [20] 汪洋,闫魁星,滕家喜,等.鄂西北濒危植物红椿天然种群动态分析[J].植物资源与环境学报,2016,25(3):96-102.
    [21] 汪洋,闵水发,江雄波,等.红椿天然林优树选择[J].浙江农林大学学报,2016,33(5):841-848.
    [22] 冯立新,陈荣,朱昌叁,等.红椿天然林优树选择[J].福建林业科技,2015,42(1):111-114.
    [23] 汪洋,郑德国,汪林波,等.鄂西北红椿天然林优树选择研究[J].河南农业科学,2016,45(9):102-106.
    [24] FERREIRA R T,VIANA A P,BARROSO D G,et al.Toona ciliata genotype selection with the use of individual BLUP with repeated measures[J].Scientia Agricola,2012,69(3):210-216.
    [25] NISA S,BIBI Y,ZIA M,et al.Anticancer investigations on Carissa opaca and Toona ciliata extracts against human breast carcinoma cell line[J].Pakistan Journal of Pharmaceutical Sciences,2013,26(5):1009-1012.
    [26] LEE S L,NG K K S,SAW L G,et al.Linking the gaps between conservation research and conservation management of rare dipterocarps:a case study of Shorea lumutensis[J].Biological Conservation,2006,131(1):72-92.
    [27] 李培,阙青敏,欧阳昆唏,等.不同种源红椿SRAP标记的遗传多样性分析[J].林业科学,2016,52(1):62-70.
    [28] 李芳兰,包维楷.植物叶片形态解剖结构对环境变化的响应与适应[J].植物学通报,2005,22(增刊):118-127.
    [29] CHECHOWITZ N,CHAPPELL D M,GUTTMAN S I,et al.Morphological,electrophoretic,and ecological analysis of Quercus macrocarpa populations in the Black Hills of South Dakota and Wyoming[J].Canadian Journal of Botany,1990,68(10):2185-2194.
    [30] 何承忠,张晏,段安安,等.滇杨优树无性系苗期叶片性状变异分析[J].西北林学院学报,2009,24(6):28-32.
    [31] 李斌,顾万春,卢宝明.白皮松天然群体种实性状表型多样性研究[J].生物多样性,2002,10(2):181-188.
    [32] 葛颂,王明庥,陈岳武.用同工酶研究马尾松群体的遗传结构[J].林业科学,1988,24(4):399-409.
    [33] MANTEL N.The detection of disease clustering and a generalized regression approach[J].Cancer Research,1967,27(2):209-220.
    [34] 刁松锋,邵文豪,姜景民,等.基于种实性状的无患子天然群体表型多样性研究[J].生态学报,2014,34(6):1451-1460.
    [35] 李文英,顾万春.蒙古栎天然群体表型多样性研究[J].林业科学,2005,41(1):49-56.
    [36] 杨维泽,金航,杨美权,等.云南滇龙胆居群表型多样性及其与环境关系研究[J].西北植物学报,2011,31(7):1326-1334.
    [37] 尹明宇,姜仲茂,朱绪春,等.内蒙古山杏种群表型变异[J].植物生态学报,2016,40(10):1090-1099.
    [38] 金则新,顾婧婧,李钧敏.基于形态及分子标记的濒危植物夏蜡梅自然居群的遗传变异研究[J].生态学报,2012,32(12):3849-3858.
    [39] 庞广昌,姜冬梅.群体遗传多样性和数据分析[J].林业科学,1995,31(6):543-550.
    [40] HAMRICK J L,ALLARD R W.Microgeographical variation in allozyme frequencies in Avena barbata[J].Proceedings of the National Academy of Sciences of the United States of America,1972,69(8):2100-2104.
    [41] 陈晓阳,沈熙环.林木育种学[M].北京:高等教育出版社,2005:57-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700