用户名: 密码: 验证码:
西非下刚果盆地深水水道沉积特征及控制因素
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics and controlling factors of deep-water channel sedimentation in Lower Congo Basin,West Africa
  • 作者:李全 ; 吴伟 ; 康洪全 ; 任世君 ; 逄林安 ; 杨婷 ; 蔡露露 ; 刘小龙
  • 英文作者:Li Quan;Wu Wei;Kang Hongquan;Ren Shijun;Pang Lin’an;Yang Ting;Cai Lulu;Liu Xiaolong;Institute of Resources and Environment,Henan Polytechnic University;CNOOC Research Institute;State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum(Beijing);NO. 3 Extraction Factory,Qinghai Oil Field Company,PetroC hina;
  • 关键词:重力流沉积 ; 高精度层序格架 ; 沉积单元 ; 深水水道 ; 水道类型 ; “源-汇”系统 ; 控制因素 ; 中新统 ; 下刚果盆地
  • 英文关键词:gravity flow deposit;;high-resolution sequence stratigraphic framework;;sedimentary unit;;deep-water channel;;channel type;;"Source-to-Sink" System;;controlling factor;;Miocene;;Lower Congo Basin
  • 中文刊名:SYYT
  • 英文刊名:Oil & Gas Geology
  • 机构:河南理工大学;中海油研究总院;油气资源与探测国家重点实验室;中国石油青海油田分公司采油三厂;
  • 出版日期:2019-04-26 17:04
  • 出版单位:石油与天然气地质
  • 年:2019
  • 期:v.40
  • 基金:国家重点实验室开放课题(PRP/open-1504);; 国家自然科学基金项目(41872112);; 国家科技重大专项(2017ZX05032-001);; 河南省博士后经费资助(1902038)
  • 语种:中文;
  • 页:SYYT201904020
  • 页数:13
  • CN:04
  • ISSN:11-4820/TE
  • 分类号:237-249
摘要
深水水道体系是从大陆斜坡到深海盆地"源-汇"系统的重要组成部分,也是当前国际深水油气勘探的重要储层类型。对下刚果盆地中新统深水水道沉积特征、充填演化和控制因素的研究有助于加深对盆地动力学过程的认知和提高深水储层的预测精度。通过应用三维地震、测井和录井资料综合分析,基于层序地层学、地震地层学和地震地貌学研究的技术方法和手段,对下刚果盆地中新统高精度层序地层格架、深水沉积单元、深水水道发育类型、复合水道体系发生、发展、衰退和消亡的演化过程,以及控制因素进行了深入研究。结果表明:下刚果盆地中新统地层以最大水退面和初始水进面为层序界面,可以划分出14个四级层序,其中四级层序SQ1L,SQ2L,SQ3L,SQ4L,SQ5L,SQ6L和SQ7L是深水水道发育的主要时期。深水水道具有侵蚀界面、水道充填、内天然堤、外天然堤、末端朵体、远洋沉积和滑塌块体7类深水沉积单元,其中水道充填和末端朵体是砂质沉积单元。研究区深水水道可以划分为单期下切、单期加积、垂向加积复合、侧向迁移复合4种基本类型,其中垂向加积复合水道和侧向迁移复合水道同时出现在四级层序SQ7L内,指示了水道充填演化中"自旋回"因素的控制作用。在此基础上,提出构造隆升是形成深水富砂水道体系的原动力,西非海平面变化控制着三级层序的发育,制约着深水水道复合体的发育规模。气候由温室转变为冰室的交替变化控制了深水砂质重力流沉积和深海泥质沉积的四级层序发育部位。
        Deep-water channel system is an important part of the "Source-to-Sink" system from continental slope to deep-sea basin,and also a critical reservoir type in international deep-water petroleum exploration.The study of sedimentary characteristics,filling processes and controlling factors of the Miocene deep-water channels in Lower Congo Basin is of great help to deepen the understanding of basin dynamics and improve the prediction accuracy of deep-water reservoirs.Based on the integrated analysis of 3 D seismic and logging data,we carried out in-depth study on the evolution of the Miocene high-resolution sequence stratigraphic framework,deep-water sedimentary units,types of deep-water channels,and the initiation,development,decline and extinction of channel complex systems,as well as the controlling factors in Lower Congo Basin.The technical means in terms of sequence stratigraphy,seismic stratigraphy and seismic geomorphology were resorted to in this study.The Miocene strata in the Lower Congo Basin can be divided into 14 fourth-order sequences with the maximum regression surface and the initial transgression surface serving as the sequence boundary.Among others,the fourth-order sequences SQ1 L,SQ2 L,SQ3 L,SQ4 L,SQ5 L,SQ6 L and SQ7 L embody the major stages of deep-water channel development.Seven types of deep-water sedimentary units were identified,namely the erosional surface,channel filling,inner levee,outer levee,terminal lobe,pelagic deposit and slump block.And the channel filling and terminal lobe are arenaceous sedimentary units.The deep-water channels in the study area can be divided into four basic types,namely the single incised-channel,single aggradation channel,vertical aggradation channel complex and lateral migration channel complex.And the vertical aggradation and lateral migration channel complexes occur simultaneously in the fourth-order sequence SQ7 L,indicating the controls of "autocyclicity" on channel filling processes.In conclusion,tectonic uplifting is a driving force for the formation of deep-water sand-rich channel systems,and the eustatic fluctuation in West Africa controls the development of third-order sequences and the scale of deep-water channel complex.The alternating climate change between greenhouse and icehouse controls the occurrence of deep-water arenaceous gravity flow deposits and deep-water argillaceous deposits in the fourth-order sequences.
引文
[1] 解习农,任建业,雷超.盆地动力学研究综述及展望[J].地质科技情报,2012,31(5):76-84.Xie Xinong,Ren Jianye,Lei Cha.Reviews and prospects of depositional basin dynamics[J].Geological Science and Technology Information,2012,31(5):76-84.
    [2] 庞雄,陈长民,朱明,等.深水沉积研究前缘问题[J].地质论评,2007,53(1):36-43.Pang Xiong,Chen Changmin,Zhu Ming,et al.Frontier of the deep-water deposition study[J].Geological Review,2007,53(1):36-43.
    [3] 李相博,卫平生,刘化清,等.浅谈沉积物重力流分类与深水沉积模式[J].地质评论,2013,59(4):607-614.Li Xiangbo,Wei Pingsheng,Liu Huaqing,et al.Discussion on the classification of sediment gravity flow and the deep-water sedimentary model[J].Geological Review,2013,59(4):607-614.
    [4] 苏明,解习农,王振峰,等.南海北部琼东南盆地中央峡谷体系沉积演化[J].石油学报,2013,34(3):467-478.Su Ming,Xie Xinong,Wang Zhenfeng,et al.Sedimentary evolution of the central canyon system in Qiongdongnan Basin,northern South China Sea[J].Acta Petrolei Sinica,2013,34(3):467-478.
    [5] 苏明,姜涛,张翠梅,等.琼东南盆地中央峡谷体系东段形态—充填特征及其地质意义[J].吉林大学学报(地球科学版),2014,44(6):1805-1815.Su Ming,Jiang Tao,Zhang Cuimei,et al.Characteristics of morphology and infillings and the geological significances of the central canyon system in Eastern Qiongdongnan Basin[J].Journal of Jilin University:Earth Science Edition,2014,44(6):1805-1815.
    [6] Peter T H,Tanya W.Global distribution of large submarine canyons:Geomorphic differences between active and passive continental margins[J].Marine Geology,2011,285(1-4):69-86.
    [7] Andrew A A,Senastian K.Morphology,seismic characteristics and development of Cap Timiris Canyon,offshore Mauritania:A newly discovered canyon preserved-off a major arid climatic region[J].Marine and Petroleum Geology,2006,23(1):37-59.
    [8] Bouma A H.Fine-grained submarine fans as possible recorders of long-and short-term climatic changes[J].Global and Planetary Change,2001,28(1):85-91.
    [9] Mc Hargue T,Pyrcz M J,Sullivan M D,et al.Architecture of turbidite channel systems on the continental slope:Patterns and predictions[J].Marine and Petroleum Geology,2011,28(3):728-743.
    [10] Dykstra M,Kneller B.Lateral accretion in a deep-marine channel complex:Implications for channellized flow processes in turbidity currents[J].Sedimentology,2009,56(5):1411-1432.
    [11] 谢清惠,邓宏文,郭佳.西非下刚果盆地深水曲流水道的地震响应特征与演化模式分析[J].石油物探,2013,52(6):655-661.Xie Qinghui,Deng Hongwen,Guo Jia.Seismic response characteristics and evolution models of deepwater meandering channels in Lower Congo Basin,West Africa[J].Geophysical Prospecting for Petroleum,2013,52(6):655-661.
    [12] Gingele F X,Deckker P D,Hillenbrand C D.Late Quaternary terrigenous sediments from the Murray Canyons area,offshore South Australia and their implications for sea level change,palaeoclimate and palaeodrainage of the Murray-Darling Basin[J].Marine Geology,2004,212(1-4):183-197.
    [13] Gong C L,Wang Y M,Zhu W L,et al.Upper Miocene to Quaternary unidirectionally migrating deep-water channels in the Pearl River Mouth Basin,northern South China Sea[J].AAPG Bulletin,2013,97(2):285-308.
    [14] 林畅松,刘景彦,蔡世祥,等.莺-琼盆地大型下切谷和海底重力流体系的沉积构成和发育背景[J].科学通报,2001,46(1):69-72.Lin Changsong,Liu Jingyan,Cai Shixiang,et al.Sedimentation and evolution background of large incised channel and submarine gravity flow systems in Ying-Qiong basin[J].Chinese Science Bulletin,2001,46(1):69-72.
    [15] Wei W,Quan L,Jing Y,et al.The Central Canyon depositional patterns and filling process in east of Lingshui Depression,Qiongdongnan Basin northern South China Sea[J].Geological Journal,2018,53(6):3064-3081.
    [16] Babonneau N,Savoye B,Cremer M,et al.Morphology and architecture of the present canyon and channel system of the Zaire deep-sea fan[J].Marine and Petroleum Geology,2002,19(4):445-467.
    [17] Abreu V,Sullivan M,Pirmez C,et al.Lateral accretion packages(LAPs):An important reservoir element in deep water sinuous channels[J].Marine and Petroleum Geology,2003,20(6-8):631-648.
    [18] Pirmez C,Imran J.Reconstruction of turbidity currents in Amazon Channel[J].Marine and Petroleum Geology,2003,20(6-8):823-849.
    [19] De Ruig M J,Hubbard S M.Seismic facies and reservoir characteristics of a deep-marine channel belt in the Molasse foreland basin,Puchkirchen Formation,Austria[J].AAPG Bulletin,2006,90(5):735-752.
    [20] Fildani A,Normark W R,Kostic S,et al.Channel formation by flow stripping:large-scale scour features along the Monterey East Channel and their relation to sediment waves[J].Sedimentology,2006,53(6):1265-1287.
    [21] Kolla V,Posamentier H W,Wood L J.Deep-water and fluvial sinuous channels-Characteristics,similarities and dissimilarities,and modes of formation[J].Marine and Petroleum Geology,2007,24(6-9):388-405.
    [22] Deptuck M E,Steffens G S,Barton M,et al.Architecture and evolution of upper fan channel-belts on the Niger Delta slope and in the Arabian Sea[J].Marine and Petroleum Geology,2003,20(6-8):649-676.
    [23] Deptuck M E,Sylvester Z,Pirmez C,et al.Migration-aggradation history and 3-D seismic geomorphology of submarine channels in the Pleistocene Benin-major Canyon,western Niger Delta slope[J].Marine and Petroleum Geology,2007,24(6):406-433.
    [24] 李华,王英民,徐强,等.深水单向迁移水道-堤岸沉积体系特征及形成过程[J].现代地质,2013,27(3):653-661.Li Hua,Wang Yingmin,Xu Qiang,et al.Characteristics and processes of deep water unidirectionally-migrating channel-levee System[J].Geoscience,2013,27(3):653-661.
    [25] 秦雁群,万仑坤,计智锋,等.深水块体搬运沉积体系研究进展[J].石油与天然气地质,2018,39(1):140-152.Qin Yanqun,Wan Lunkun,Ji Zhifeng,et al.Progress of research on deep-water mass-transport deposits[J].Oil & Gas Geology,2018,39(1):140-152.
    [26] 赵钊,汤良杰,赵志刚,等.南海北部珠二坳陷超深水区断层系统分析中的高精度相干技术[J].石油与天然气地质,2018,39(1):165-174.Zhao Zhao,Tang Liangjie,Zhao Zhigang,et al.High-precision coherence technique in fault system analysis in ultra-deepwater area of the ZhuⅡDepression,northern South China Sea[J].Oil & Gas Geology,2018,39(1):165-174.
    [27] 孙辉,刘少治,吕福亮,等.东非鲁武马盆地渐新统深水沉积层序地层格架组成和时空分布[J].石油与天然气地质,2019,40(1):170-181.Sun Hui,Liu Shaozhi,Lyv Fuliang,et al.Stratigraphic framework and temporal spatial distribution of Oligocene deepwater sedimentary sequence in Ruvuma Basin,East Africa[J].Oil & Gas Geology,2019,40(1):170-181.
    [28] 李向东,阙易,郇雅棋,等.鄂尔多斯盆地西缘中奥陶统克里摩里组深水等深流溢岸混合沉积[J].石油与天然气地质,2018,39(6):1201-1212.Li Xiangdong,Que Yi,Huan Yaqi,et al.Mixed carbonate siliciclastic sequences of deep water contour current overflow origin of Kelimoli Formation in Zhuozishan area,western margin of Ordos Basin[J].Oil & Gas Geology,2018,39(6):1201-1212.
    [29] Sylvester Z,Pirmez C,Cantelli A,et al.A model of submarine channel-levee evolution based on channel trajectories:Implications for stratigraphic architecture[J].Marine and Petroleum Geology,2011,28(3):716-727.
    [30] 郑荣才,李云,戴朝成,等.白云凹陷珠江组深水扇砂质碎屑流沉积学特征[J].吉林大学学报(地球科学版),2012,42(6):1581-1589.Zheng Rongcai,Li Yun,Dai Chaocheng,et al.Depositional features of sandy debris flow of submarine fan in Zhujiang Formation,Baiyun Sag[J].Journal of Jilin University:Earth Science Edition,2012,42(6):1581-1589.
    [31] 陈宇航,姚根顺,吕福亮,等.东非鲁伍马盆地渐新统深水水道—朵体沉积特征及控制因素[J].石油学报,2017,38(9):1048-1058.Chen Yuhang,Yao Genshun,Lyv Fuliang,et al.Sedimentary characteristics and controlling factors of Oligocene deep-water channel-lobe in Rovuma Basin of the East Africa[J].Acta Petrolei Sinica,2017,38(9):1048-1058.
    [32] 王英民,王海荣,邱燕,等.深水沉积的动力学机制和响应[J].沉积学报,2007,25(4):495-504.Wang Yingmin,Wang Hairong,Qiu Yan,et al.Process of dynamics and its response of deep-water sedimentation[J].Acta Sedmentologica Sinica,2007,25(4):495-504.
    [33] Quan L,Shui Y,Wei W,et al.Detection of a deep-water channel in 3D seismic data using the sweetness attribute and seismic geomorphology:A case study from the Taranaki Basin,New Zealand[J].New Zealand Journal of Geology and Geophysics,2017,60(3):199-208.
    [34] Li Q,Wu W,Yu S,et al.The application of three-dimensional seismic spectral decomposition and semblance attribute to characterizing the deepwater channel depositional elements in the Taranaki Basin of New Zealand[J].Acta Oceanologica Sinica,2017,36(9):79-86.
    [35] Jeff P,Kathryn J A,Gareth M K,et al.Flow processes and sedimentation in submarine channel bends[J].Marine and Petroleum Geology,2007,24(6-9):470-486.
    [36] 蔡露露,刘春成,吕明,等.西非下刚果盆地深水水道发育特征及沉积储层预测[J].中国海上油气,2016,28(2):60-70.Cai Lulu,Liu Chuncheng,Lyu Ming,et al.The development characteristics of deep water channel and sedimentary reservoir prediction in Lower Congo basin,West Africa[J].China Offshore Oil and Gas,2016,28(2):60-70.
    [37] 王琳霖,王振奇,肖鹏.下刚果盆地 A 区块中新统深水沉积体系特征[J].石油与天然气地质,2015,36(6):963-974.Wang Linlin,Wang Zhenqi,Xiao Peng.Characterization of deep water sedimentary system in the Miocene of Block A in Lower Congo Basin[J].Oil & Gas Geology,2015,36(6):963-974.
    [38] Martin P A,Michael R H.Evolution of the Cretaceous Astrid thrust belt in the ultradeep water Lower Congo Basin,Gabon[J].AAPG Bulletin,2008,92(4):487-511.
    [39] Van W,Van I J.Fine-grained sediments of the Zaire deepsea fan,southern Atlantic Ocean[J].Geological Society,London,Special Publications,1984,15(1):95-113.
    [40] Posamentier H,Allen G.Variability of the sequence stratigraphic model:effects of local basin factors[J].Sedimentray Geology,1993,86(1-2):91-109.
    [41] 秦雁群,计智锋,万仑坤,等.海相深水碎屑岩层序地层学理论进展及关键问题[J].石油与天然气地质,2017,38(1):12-21.Qin Yanqun,Ji Zhifeng,Wan Lunkun,et al.Theory progress and key issues of deep water marine clastic sequence stratigraphy[J].Oil and Gas geology,2017,38(1):12-21.
    [42] 林畅松,李思田,刘景彦,等.塔里木盆地古生代重要演化阶段的古构造格局与古地理演化[J].岩石学报,2011,27(1):210-218.Lin Changsong,Li Sitian,Liu Jingyan,et al.Tectonic framework and paleogeographic evolution of the Tarim basin during the Paleozoic major evolutionary stages[J].Acta Petrologica Sinica,2011,27(1):210-218.
    [43] 林畅松,刘景彦,刘丽军,等.高精度层序地层分析:建立沉积相和储层规模的等时地层格架[J].现代地质,2002,16(3):276-281.Lin Changsong,Liu Jingyan,Liu Lijun,et al.High resolution sequence stratigraphy analysis:construction of chronostratigraphic sequence framework on facies and reservoir scale[J].Geoscience,2002,16(3):276-281.
    [44] 林煜,吴胜和,王星,等.尼日尔三角洲盆地深水油田 A 海底扇储层质量差异[J].石油与天然气地质,2014,35(3):494-502.Lin Yu,Wu Shenghe,Wang Xing,et al.Reservoir quality differences of submarine fans in deep-water oilfield A in Niger Delta Basin,West Africa[J].Oil and Gas Geology,2014,35(3):494-502.
    [45] 朱筱敏,曾洪流,董艳蕾.地震沉积学原理与应用[M],北京:石油工业出版社,2017.20-38.Zhu Xiaomin,Zeng Hongliu,Dong Yanlei.seismic Sedimentology[M].Beijing:Petroleum Industry Press,2017.20-38.
    [46] Zhang Wenbiao,Duan Taizhong,Liu Zhiqiang,et al.Architecture mode,sedimentary evolution and controlling factors of deepwater turbidity channels:A case study of the M Oilfield in West Africa[J].Petroleum Science,2017,14(3):493-506.
    [47] Shanmugam G.The constructive functions of tropical cyclones and tsunamis on deep-water sand deposition during sea level highstand:implications for petroleum exploration[J].AAPG Bulletin,2008,92(4):443-71.
    [48] Posamentier H W,Kolla V..Seismic geomorphology and stratigraphy of depositional elements in deep-water settings[J].Journal of Sediment Research,2003,73(3):367-388.
    [49] Prather B E.Controls on reservoir distribution,architecture and stratigraphic trapping in slope settings[J].Marine and Petroleum Geology,2003,20(6-8):529-545.
    [50] Séranne M.Early Oligocene stratigraphic turnover on west Africa continental margin:A signature of the Tertiary greenhouse to icehouse transition[J].Terra Nova,1999,11(4):135-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700