用户名: 密码: 验证码:
Retrieval of Snow Depth on Sea Ice in the Arctic Using the FengYun-3B Microwave Radiation Imager
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Retrieval of Snow Depth on Sea Ice in the Arctic Using the FengYun-3B Microwave Radiation Imager
  • 作者:LI ; Lele ; CHEN ; Haihua ; GUAN ; Lei
  • 英文作者:LI Lele;CHEN Haihua;GUAN Lei;College of Information Science and Engineering, Ocean University of China;
  • 英文关键词:MWRI;;AMSRE;;brightness temperature;;snow depth;;inter-sensor calibration;;sea ice concentration
  • 中文刊名:QDHB
  • 英文刊名:中国海洋大学学报(英文版)
  • 机构:College of Information Science and Engineering, Ocean University of China;
  • 出版日期:2019-06-06
  • 出版单位:Journal of Ocean University of China
  • 年:2019
  • 期:v.18
  • 基金:Funding for this project was provided by the National Key Research and Development Program of China (No. 2016YFC1402704);; the Global Change Research Program of China (No. 2015CB953901)
  • 语种:英文;
  • 页:QDHB201903006
  • 页数:9
  • CN:03
  • ISSN:37-1415/P
  • 分类号:48-56
摘要
Snow on sea ice is a sensitive indicator of climate change because it plays an important role regulating surface and near surface air temperatures. Given its high albedo and low thermal conductivity, snow cover is considered a key reason for amplified warming in polar regions. This study focuses on retrieving snow depth on sea ice from brightness temperatures recorded by the Microwave Radiation Imager(MWRI) on board the FengYun(FY)-3 B satellite. After cross calibration with the Advanced Microwave Scanning Radiometer-EOS(AMSR-E) Level 2 A data from January 1 to May 31, 2011, MWRI brightness temperatures were used to calculate sea ice concentrations based on the Arctic Radiation and Turbulence Interaction Study Sea Ice(ASI) algorithm. Snow depths were derived according to the proportional relationship between snow depth and surface scattering at 18.7 and 36.5 GHz. To eliminate the influence of uncertainties in snow grain sizes and sporadic weather effects, seven-day averaged snow depths were calculated. These results were compared with snow depths from two external data sets, the IceBridge ICDIS4 and AMSR-E Level 3 Sea Ice products. The bias and standard deviation of the differences between the MWRI snow depth and IceBridge data were respectively 1.6 and 3.2 cm for a total of 52 comparisons. Differences between MWRI snow depths and AMSR-E Level 3 products showed biases ranging between-1.01 and-0.58 cm, standard deviations from 3.63 to 4.23 cm, and correlation coefficients from 0.61 to 0.79 for the different months.
        Snow on sea ice is a sensitive indicator of climate change because it plays an important role regulating surface and near surface air temperatures. Given its high albedo and low thermal conductivity, snow cover is considered a key reason for amplified warming in polar regions. This study focuses on retrieving snow depth on sea ice from brightness temperatures recorded by the Microwave Radiation Imager(MWRI) on board the FengYun(FY)-3 B satellite. After cross calibration with the Advanced Microwave Scanning Radiometer-EOS(AMSR-E) Level 2 A data from January 1 to May 31, 2011, MWRI brightness temperatures were used to calculate sea ice concentrations based on the Arctic Radiation and Turbulence Interaction Study Sea Ice(ASI) algorithm. Snow depths were derived according to the proportional relationship between snow depth and surface scattering at 18.7 and 36.5 GHz. To eliminate the influence of uncertainties in snow grain sizes and sporadic weather effects, seven-day averaged snow depths were calculated. These results were compared with snow depths from two external data sets, the IceBridge ICDIS4 and AMSR-E Level 3 Sea Ice products. The bias and standard deviation of the differences between the MWRI snow depth and IceBridge data were respectively 1.6 and 3.2 cm for a total of 52 comparisons. Differences between MWRI snow depths and AMSR-E Level 3 products showed biases ranging between-1.01 and-0.58 cm, standard deviations from 3.63 to 4.23 cm, and correlation coefficients from 0.61 to 0.79 for the different months.
引文
Ashcroft,P.,and Wentz,F.,2013.AMSR-E/Aqua L2A global swath spatially-resampled brightness temperatures,version 3.NASA National Snow and Ice Data Center Distributed Active Archive Center,Boulder,Colorado,USA,DOI:10.5067/AMSR-E/AE_L2A.003.
    Brucker,L.,and Markus,T.,2013.Arctic-scale assessment of satellite passive microwave-derived snow depth on sea ice using Operation IceBridge airborne data.Journal of Geophysical Research:Oceans,118:2892-2905,DOI:10.1002/jgrc.20228.
    Cavalieri,D.J.,Comiso,J.C.,and Markus,T.,2014.AMSR-E/Aqua daily L3 12.5 km brightness temperature,sea ice concentration,and snow depth polar grids,version 3.NASA National Snow and Ice Data Center Distributed Active Archive Center,Boulder,Colorado,USA,DOI:10.5067/AMSR-E/AE_SI12.003.
    Cavalieri,D.J.,Crawford,J.,Drinkwater,M.,Emery,W.J.,Eppler,D.T.,Farmer,L.D.,Goodberlet,M.,Jentz,R.,Milman,A.,Morris,C.,Onstott,R.,Schweiger,A.,Shuchman,R.,Steffen,K.,Swift,C.T.,Wackerman,C.,and Weaver,R.L.,1992.NASA sea ice validation program for the DMSP SSMI:Final report.NASA Technical Memorandum 104559.National Aeronautics and Space Administration,Washington,D.C.,USA.
    Comiso,J.C.,and Hall,D.K.,2014.Climate trends in the Arctic as observed from space.WIREs Climate Change,5:389-409,DOI:10.1029/JC091iC08p09663.
    Comiso,J.C.,and Sullivan,C.W.,1986.Satellite microwave and in-situ observations of the Weddell sea ice cover and its marginal ice zone.Journal of Geophysical Research,91(CS):9663-9681,DOI:10.1029/JC091iC08p09663.
    Comiso,J.C.,Cavalieri,D.J.,and Markus,T.,2003.Sea ice concentration,ice temperature,and snow depth using AMSR-E data.IEEE Transactions on Geoscience and Remote Sensing,41(2):243-252,DOI:10.1109/TGRS.2002.808317.
    Comiso,J.C.,Cavalieri,D.J.,Parkinson,C.L.,and Gloersen,P.,1997.Passive microwave algorithms for sea ice concentration-A comparison of two techniques.Remote Sensing of Environment,60(3):357-384,DOI:10.1016/S0034-4257(96)00220-9.
    Gloersen,P.,and Barath,F.T.,1977.A scanning multichannel microwave radiometer for Nimbus-G and SeaSat-A.IEEEJournal of Oceanic Engineering,2(2):172-178,DOI:10.1109/joe.1977.1145331.
    Gloersen,P.,Campbell,W.J.,Cavalieri,D.J.,Comiso,J.C.,Parkinson,C.L.,and Zwally,H.J.,1992.Arctic and Antarctic sea ice,1978-1987:Satellite passive microwave observations and analysis.National Aeronautics and Space Administration,SP-511:200,DOI:10.1016/0021-9169(95)90010-1.
    Gloersen,P.,Willicit,T.T.,Chang,T.C.,Nordberg,W.,and Campbell,W.J.,1974.Microwave maps of the polar ice of the Earth.Bulletin of the American Meteorological Society,55:1442-1448.
    Holland,M.M.,and Bitz,C.M.,2003.Polar amplification of climate change in coupled models.Climate Dynamics,21(3-4):221-232,DOI:10.1007/s00382-003-0332-6.
    Ivanova,N.,Johannessen,O.M.,Pedersen,L.T.,and Tonboe,R.T.,2014.Retrieval of Arctic sea ice parameters by satellite passive microwave sensors:A comparison of eleven sea ice concentration algorithms.IEEE Transactions on Geoscience and Remote Sensing,52(11):7233-7246,DOI:10.1029/JC091iC03p03913.
    Kaleschke,L.,Lüpkes,C.,Vihma,T.,Haarpaintner,J.,Bochert,A.,Hartmann,J.,and Heygster,G.,2001.SSM/I sea ice remote sensing for mesoscale ocean-atmosphere interaction analysis.Canadian Journal of Remote Sensing,27(5):526-537,DOI:10.1080/07038992.2001.10854892.
    Kawanishi,T.J.,Sezai,T.,Ito,Y.,Imaoka,K.,Takeshima,T.,Ishido,Y.,Shibata,A.,Miura,M.,Inahata,H.,and Spencer,R.W.,2003.The Advanced Scanning Microwave Radiometer for the Earth Observing System(AMSR-E):NASDA’s contribution to the EOS for global energy and water cycle studies.IEEE Transactions on Geoscience and Remote Sensing,41(2):184-194,DOI:10.1109/TGRS.2002.808331.
    Kelly,R.,Chang,A.T.C.,Tsang,L.,and Foster,J.L.,2003.Aprototype AMSR-E global snow area and snow depth algorithm.IEEE Transactions on Geoscience and Remote Sensing,41(2):230-242,DOI:10.1109/tgrs.2003.809118.
    Kern,S.,2004.A new method for medium-resolution sea ice analysis using weather-influence corrected Special Sensor Microwave/Imager 85 GHz data.International Journal of Remote Sensing,25(21):4555-4582,DOI:10.1080/01431160410001698898.
    Kurtz,N.T.,Farrell,S.L.,Studinger,M.,Galin,N.,Harbeck,J.P.,Lindsay,R.,Onana,V.D.,Panzer,B.,and Sonntag,J.G.,2013.Sea ice thickness,freeboard,and snow depth products from Operation IceBridge airborne data.The Cryosphere,7:1035-1056,DOI:10.5194/tc-7-1035-2013.
    Kurtz,N.T.,Studinger,M.S.,Harbeck,J.,Onana,V.,and Yi,D.,2015.IceBridge L4 sea ice freeboard,snow depth,and thickness,version 1.NASA National Snow and Ice Data Center Distributed Active Archive Center,Boulder,Colorado,USA,DOI:10.5067/G519SHCKWQV6.
    Markus,T.,and Cavalieri,D.J.,1998.Snow depth distribution over sea ice in the Southern Ocean from satellite passive microwave data.In:Antarctic Sea Ice:Physical Processes,Interactions and Variability.Jeffries,M.O.,ed.,American Geophysical Union,Washington,D.C.,19-40,DOI:10.1029/AR074p0019.
    Markus,T.,and Cavalieri,D.J.,2000.An enhancement of the NASA team sea ice algorithm.IEEE Transactions on Geoscience and Remote Sensing,38(3):1387-1398,DOI:10.1109/36.843033.
    Markus,T.,and Cavalieri,D.J.,2008.AMSR-E Algorithm Theoretical Basis Document Supplement:Sea Ice Products.Hydrospheric and Biospheric Sciences Laboratory.NASA Goddard Space Flight Center,Greenbelt,MD,1-9.
    Markus,T.,Comiso,J.C.,Cavalieri,D.J.,and Ivanoff,A.,2015.NRT AMSR2 daily L3 12.5 km TB and sea ice concentration polar grids.https://lance.nsstc.nasa.gov/amsr2-science/data/level3/seaice25.NASA Global Hydrology Center DAAC,Huntsville,Alabama,USA,DOI:10.5067/AMSR2/A2_SI2 5_NRT.
    Parkinson,C.L.,Comiso,J.C.,Zwally,H.J.,Cavalieri,D.J.,Gloersen,P.,and Campbell,W.J.,1987.Arctic sea ice,1973-1976:Satellite passive microwave observations.National Aeronautics and Space Administration,SP-489:296.
    Spreen,G.,Kaleschke,L.,and Heygster,G.,2008.Sea ice remote sensing using AMSR-E 89-GHz channels.Journal of Geophysical Research,113(C2):447-453,DOI:10.1029/2005JC003384.
    Svendsen,E.,Atzler,C.M.,and Grenfell,T.C.,1987.A model for retrieving total sea ice concentration from a spaceborne dual-polarized passive microwave instrument operating near90 GHz.International Journal of Remote Sensing,8(10):1479-1487,DOI:10.1080/01431168708954790.
    Tschudi,M.,Fowler,C.,Maslanik,J.,Stewart,J.S.,and Meier,W.,2016.EASE-grid sea ice age,version 3.NASA National Snow and Ice Data Center Distributed Active Archive Center,Boulder,Colorado,USA,DOI:10.5067/PFSVFZA9 Y85G.
    Yang,H.,Weng,F.Z.,Lv,L.Q.,Lu,N.M.,Liu,G.F.,Bai,M.,Qian,Q.Y.,He,J.K.,and Xu,H.X.,2011.The FengYun-3microwave radiation imager on-orbit verification.IEEE Transactions on Geoscience and Remote Sensing,39(11):4552-4560,DOI:10.1109/TGRS.2011.2148200.
    Yang,H.,Zou,X.L.,Li,X.Q.,and You,R.,2012.Environmental data records from FengYun-3B microwave radiation imager.IEEE Transactions on Geoscience and Remote Sensing,50(12):4986-4993,DOI:10.1109/tgrs.2012.2197003.
    Zwally,H.J.,Comiso,J.C.,Parkinson,C.L.,Campbell,W.J.,Carsey,F.D.,and Gloersen,P.,1983.Antarctic Sea Ice,1973-1976:Satellite Passive-Microwave Observations.NASA SP-459,Washington,D.C.,1-206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700