用户名: 密码: 验证码:
基于TDLAS技术的甲烷气体全量程探测系统
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Methane gas full range detection system based on TDLAS technology
  • 作者:谢子殿 ; 冯源 ; 韩龙
  • 英文作者:Xie Zidian;Feng Yuan;Han Long;School of Electrical & Control Engineering, Heilongjiang University of Science & Technology;
  • 关键词:甲烷 ; TDLAS技术 ; 直接吸收检测 ; 波长调制
  • 英文关键词:methane;;TDLAS technology;;direct absorption detection;;wavelength modulation
  • 中文刊名:HLJI
  • 英文刊名:Journal of Heilongjiang University of Science and Technology
  • 机构:黑龙江科技大学电气与控制工程学院;
  • 出版日期:2019-05-30
  • 出版单位:黑龙江科技大学学报
  • 年:2019
  • 期:v.29;No.131
  • 语种:中文;
  • 页:HLJI201903015
  • 页数:6
  • CN:03
  • ISSN:23-1588/TD
  • 分类号:85-90
摘要
为提高矿井甲烷气体检测的准确性,利用Simulink对TDLAS系统中光源调制部分以及气体吸收部分进行仿真,将仿真结果移植进DSP硬件中,作为探测电路提供信号源,结合直接吸收检测和波长调制法,设计了一种全量程的甲烷探测系统。以体积分数5%为阈值,低于阈值时使用波长调制法进行检测,高于阈值时使用直接吸收法检测。结果表明:在0~5%体积分数范围内,甲烷监测系统测量误差不超过±0.05%;在5%~100%的体积分数范围内,最大测量误差不超过±2%。实验结果良好,证明该系统可行,弥补了使用单一测量方法带来的误差。
        This paper seeks to improve the accuracy of methane gas detection in mine. The work involves simulating the light source modulation part and the gas absorption part of the TDLAS system by Simulink; transplanting the simulation results into the DSP and designing a methane detection system with full range, combined with direct absorption detection and wavelength modulation(WMS), a system which could make up for the error caused by using a single measurement method to provide the signal source for the detection circuit; and using the wavelength modulation method for detection by setting the concentration threshold 5%, at the standard concentration below the threshold, and using the direct absorption method for detection at higher threshold value. The experimental results show that methane monitoring system could provide the measurement error of within ±0.05% at the concentration from 0 to 5%, and the maximum measurement error of less than 2% at the concentration from 5% to 100%. The experimental results are better and prove the system feasibility.
引文
[1] 白鹏.煤矿瓦斯检测、监测与甲烷传感器[J].大众标准化,2006(S1):115-116.
    [2] 潘雅楠.基于光谱吸收激光式甲烷传感器[J].煤矿安全,2013,44(1):99-101.
    [3] 原亮.基于NDIR技术的矿用瓦斯浓度检测报警装置[D].哈尔滨:哈尔滨工业大学,2014.
    [4] 曹家年,张可可,王琢,等.可调谐激光吸收光谱光纤甲烷传感器研究[J].哈尔滨工程大学学报,2011,32(3):366-371.
    [5] 曲世敏,王明,李楠.基于TDLAS-WMS的中红外痕量CH4检测仪[J].光谱学与光谱分析,2016,36(10):3174-3178.
    [6] 张宇.甲烷中红外检测系统结构设计及实验研究[D].长春:吉林大学,2007.
    [7] 刘昱峰.采用VCSEL光源的新型TDLAS甲烷气体检测系统研究[D].长春:中国科学院大学,2018.
    [8] 康信文.免标定的TDLAS氧气在线测量系统[D].南京:东南大学,2017.
    [9] 付丽,党敬民,苗春壮,等.室温连续中红外量子级联激光器驱动电源的研制[J].光子学报,2015,44(12):36-43.
    [10] 王琢,曹家年,张可可,等.光学式低浓度甲烷气体传感器的研究[J].光子学报,2011,40(2):255-258.
    [11] 贺玉凯,王汝琳,张丽,等.基于光谱吸收原理的光纤甲烷传感器检测方法研究[J].工矿自动化,2006(5):1-5.
    [12] 黄渐强,翟冰,叶玮琳,等.基于波长调制技术的近红外甲烷检测仪[J].光电子·激光,2014,25(5):947-953.
    [13] Stutz J,Platt U.Numerical analysis and estimation of the statistical error of differential optical absorption spectroscopy measurements with least-squares methods[J].Appl Opt,1996,35(30):6041-6053.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700