用户名: 密码: 验证码:
基于PMF模型及地统计法的乐安河中上游地区土壤重金属来源解析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Source Apportionment of Soil Heavy Metal in the Middle and Upper Reaches of Le'an River based on PMF Model and Geostatistics
  • 作者:李娇 ; 滕彦国 ; 吴劲 ; 蒋进元 ; 黄莹
  • 英文作者:LI Jiao;TENG Yanguo;WU Jin;JIANG Jinyuan;HUANG Ying;Chinese Research Academy of Environmental Sciences;College of Water Sciences,Beijing Normal University;College of Architecture and Civil Engineering,Beijing University of Technology;
  • 关键词:土壤重金属 ; 源解析 ; 源成分谱 ; 正定矩阵因子分解模型 ; 反距离权重法
  • 英文关键词:soil heavy metal;;source appointment;;source profiles;;positive matrix factorization model;;inverse distance weighting
  • 中文刊名:HJKX
  • 英文刊名:Research of Environmental Sciences
  • 机构:中国环境科学研究院;北京师范大学水科学研究院;北京工业大学建筑工程学院;
  • 出版日期:2018-07-25 15:06
  • 出版单位:环境科学研究
  • 年:2019
  • 期:v.32;No.257
  • 基金:广西创新驱动发展专项资金项目(No.AA17202032);; 国家水体污染控制与治理重大科技专项(No.2017ZX07401)~~
  • 语种:中文;
  • 页:HJKX201906008
  • 页数:9
  • CN:06
  • ISSN:11-1827/X
  • 分类号:70-78
摘要
为实现较大区域范围内土壤重金属来源贡献程度的定量化,选取江西省乐安河中上游地区表层土壤为研究对象,分析污染源样品化学组分并构建本地污染源成分谱,利用PMF(正定矩阵因子分解)模型对土壤重金属进行源解析,并结合地统计空间分析法识别各源的主要影响区域.结果表明:乐安河中上游地区土壤中w(As)、w(Hg)、w(Cd)、w(Cr)、w(Zn)、w(Cu)、w(Mn)、w(Pb)的平均值分别为21.400、0.105、0.25、73.5、88.4、56.2、577.0、49.5 mg/kg,是江西省土壤背景值平均值的1.0~1.8倍,其中,w(As)、w(Cd)、w(Cu)、w(Pb)平均值超过GB 15618—1995《土壤环境质量标准》一级标准限值.土壤重金属主要受铅锌矿冶炼源、金矿选冶源、铜矿采选源、自然源、混合源的影响.铅锌矿开采冶炼活动对洎水河左岸大部分区域土壤造成了影响,源贡献率均大于30%;金矿选冶活动目前仅影响矿区附近土壤,源贡献率最高可达94%;铜矿采选活动也使德兴铜矿周边较大区域范围土壤受到影响,源贡献率处于19%~89%之间.研究显示,构建本地源成分谱可以辅助解析验证PMF源成分谱的有效性,将PMF模型与地统计空间分析法相结合,可以进一步得到源贡献率在空间上的分布状况,对于土壤污染治理决策可提供行之有效的支撑.
        To quantify the contribution of soil heavy metal sources over a large area,surface soil in the middle and upper reaches of the Le' an River in Jiangxi Province was selected as the research object. The chemical compositions of the soil samples were analyzed to determine the local source profiles. The PMF( positive matrix factorization) model was applied to apportion the potential sources and their contribution of soil heavy metals. The results showed that the average concentrations of As,Hg,Cd,Cr,Zn,Cu,Mn,Pb in the soil samples were 21. 400,0. 105,0. 25,73. 5,88. 4,56. 2,577. 0,49. 5 mg/kg respectively,ranking from 1. 0 to 1. 8 times of their respective soil background values of Jiangxi Province. The mean values of As,Cd,Cu,Pb exceeded the grade one of Environmental Quality Standard for Soils( GB 15618-1995) in China. The results also show that the soil heavy metals were mainly affected by lead-zinc ore smelting,gold ore smelting,copper mining,and natural sources. Lead-zinc ore smelting activities affected the soil in most areas on the left side of Jishui River Basin,with the source contribution of more than 30%. While,gold ore smelting activities currently affected only the soil near the mining area,with the maximum source contribution of 94%. In addition,the soil heavy metals around the Dexing Copper Mine was affected by copper mining and smelting activities,which the source contribution was between 19% and 89%. This study indicates that constructing the local source profiles can assist in the apportionment and verification of the validity of PMF source profiles.Combining PMF model and geostatistical spatial analysis is an effective method for obtaining the potential sources distribution,and can provide an effective support for soil pollution control decision-making.
引文
[1]董騄睿,胡文友,黄标,等.基于正定矩阵因子分析模型的城郊农田土壤重金属源解析[J].中国环境科学,2015,35(7):2103-2111.DONG Lurui,HU Wenyou,HUANG Biao,et al.Source appointment of heavy metals in suburban farmland soils based on positive matrix factorization[J].China Environmental Science,2015,35(7):2103-2111.
    [2]WANG Guoqiang,A Yinglan,JIANG Hong,et al. Modeling the source contribution of heavy metals in surficial sediment and analysis of their historical changes in the vertical sediments of a drinking water reservoir[J].Journal of Hydrology,2015,520:37-51.
    [3]瞿明凯,李卫东,张传荣,等.基于受体模型和地统计学相结合的土壤镉污染源解析[J].中国环境科学,2013,33(5):854-860.QU Mingkai,LI Weidong,ZHANG Chuanrong,et al. Source apportionment of soil heavy metal Cd based on the combination of receptor model and geostatistics[J].China Environmental Science,2013,33(5):854-860.
    [4]张慧,郑志志,马鑫鹏,等.哈尔滨市土壤表层重金属污染特征及来源辨析[J].环境科学研究,2017,30(10):1597-1606.ZHANG Hui,ZHENG Zhizhi,MA Xinpeng,et al. Sources and pollution characteristics of heavy metals in surface soils of Harbin City[J].Research of Environmental Sciences,2017,30(10):1597-1606.
    [5]LUO Xiaosan, XUE Yan, WANG Yanling, et al. Source identification and apportionment of heavy metals in urban soil profiles[J].Chemosphere,2015,127:152-157.
    [6]JIANG Yanxue,CHAO Sihong,LIU Jianwei,et al. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province,China[J]. Chemosphere,2016,168:1658-1668.
    [7]艾建超,王宁,杨净.基于UNMIX模型的夹皮沟金矿区土壤重金属源解析[J].环境科学,2014,35(9):3530-3536.AI Jianchao,WANG Ning,YANG Jing.Source apportionment of soil heavy metals in Jiapigou Goldmine based on the UNMIX model[J].Environmental Science,2014,35(9):3530-3536.
    [8]YANG Bing,ZHOU Lingli,XUE Nandong,et al. Source apportionment of polycyclic aromatic hydrocarbons in soils of Huanghuai Plain,China:comparison of three receptor models[J].Science of the Total Environment,2013,443:31-39.
    [9]ZUO Q,DUAN Y H,YANG Y,et al. Source apportionment of polycyclic aromatic hydrocarbons in surface soil in Tianjin,China[J].Environmental Pollution,2007,147(2):303-310.
    [10]陈秀端,卢新卫.基于受体模型与地统计的城市居民区土壤重金属污染源解析[J].环境科学,2017,38(6):2513-2521.CHEN Xiuduan,LU Xinwei. Source apportionment of soil heavy metals in city residential areas based on the receptor model and geostatistics[J].Environmental Science,2017,38(6):2513-2521.
    [11]CHUEINTA W,HOPE P K,PAATERO P.Investigation of sources of atmospheric aerosol at urban and suburban residential areas in Thailand by positive matrix factorization[J]. Atmospheric Environment,2000,34(20):3319-3329.
    [12]BROWN S G,EBERLY S,PAATERO P,et al. Methods for estimating uncertainty in PMF solutions:examples with ambient air and water quality data and guidance on reporting PMF results[J].Science of the Total Environment,2015,518/519:626-635.
    [13]VU C T,LIN C,SHERN C C,et al.Contamination,ecological risk and source apportionment of heavy metals in sediments and water of a contaminated river in Taiwan[J].Ecological Indicators,2017,82:32-42.
    [14]XUE Jianlong,ZHI Yuyou,YANG Liping,et al. Positive matrix factorization as source apportionment of soil lead and cadmium around a battery plant(Changxing County,China)[J].Environmental Science and Pollution Research,2014,21(12):7698-7707.
    [15]李娇,陈海洋,滕彦国,等.拉林河流域土壤重金属污染特征及来源解析[J].农业工程学报,2016,32(19):226-233.LI Jiao,CHEN Haiyang,TENG Yanguo,et al. Contamination characteristics and source apportionment of soil heavy metals in Lalin River Basin[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(19):226-233.
    [16]PAATERO P,TAPPER U. Positive matrix factorization:a nonnegative factor model with optimal utilization of error estimates of data values[J].Environmetrics,1994,5(2):111-126.
    [17]CHEN Haiyang,TENG Yanguo,LI Jiao,et al.Source apportionment of trace metals in river sediments:a comparison of three methods[J].Environmental Pollution,2016,211:28-37.
    [18]国家环境保护局.GB 15618—1995土壤环境质量标准[S].北京:中国标准出版社,1995.
    [19]中国环境监测总站.中国土壤环境背景值[M].北京:中国环境科学出版社,1990.
    [20]XIAO H Y,ZHOU W B,WU D S,et al.Heavy Metal contamination in sediments and floodplain topsoils of the Le'an River catchment,China[J]. Soil&Sediment Contamination,2011,20(20):810-823.
    [21]成永霞,赵宗生,王亚洲,等.河南省某铅冶炼厂附近农田土壤重金属污染特征[J].土壤通报,2014,45(6):1505-1510.CHENG Yongxia,ZHAO Zongsheng,WANG Yazhou,et al. Soil heavy metals pollution in the farmland near a lead smelter in Henan Province[J].Chinese Journal of Soil Science,2014,45(6):1505-1510.
    [22]朱佳文.湘西花垣铅锌矿区重金属污染土壤生态修复研究[D].长沙:湖南农业大学,2012.
    [23]闫玉娥.废弃铅冶炼厂场地重金属污染现状调查及形态分析[D].郑州:郑州大学,2015.
    [24]LI Zhonggen,FENG Xinbin,LI Guanghui,et al.Mercury and other metal and metalloid soil contamination near a Pb/Zn smelter in east Hunan Province,China[J]. Applied Geochemistry,2011,26(2):160-166.
    [25]叶国华,童雄,张杰.含砷矿石的除砷研究进展[J].国外金属矿选矿,2006,43(3):20-24.
    [26]毛光周,华仁民,高剑峰,等.江西金山金矿床含金黄铁矿的稀土元素和微量元素特征[J].矿床地质,2006,25(4):412-426.MAO Guangzhou,TONG Xiong,GAO Jianfeng,et al. REE composition and trace element features of gold-bearing pyrite in Jinshan gold deposit,Jiangxi Province[J].Mineral Deposits,2006,25(4):412-426.
    [27]田树国,刘亮.高砷金矿预处理脱砷技术发展现状[J].矿业工程,2008,6(6):26-28.TIAN Shuguo,LIU Liang. Development status of pre-dearsenication technology for gold ore with high arsenic content[J]. Mining Engineering,2008,6(6):26-28.
    [28]SONG Shiming,MATHUR R,RUIZ J,et al. Fingerprinting two metal contamination in streams with Cu isotopes near the Dexing Mine,China[J].Science of the Total Environment,2016,544:677-685.
    [29]卢镜丞,任伯帜,马宏璞.湘潭锰矿尾矿库土壤重金属污染评价[J].山西建筑,2014,40(18):225-226.LU Jingcheng,REN Bozhi,MA Hongpu. Evaluation of soil heavy metal pollution in Xiangtan manganese ore tailings[J]. Shanxi Architecture,2014,40(18):225-226.
    [30]黄海燕.锰矿废水污染现状分析与微生物修复技术研究[D].贵阳:贵州大学,2009.
    [31]李军,刘云国,彭晖冰.锰矿废弃地重金属污染土壤的评价及修复措施探讨[J].环境保护科学,2009,35(2):63-66.LI Jun,LIU Yunguo,PENG Huibing. Assessment on heavy metal pollution in soil of abandoned Mn mines and its remediated measures discussion[J]. Environmental Protection Science,2009,35(2):63-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700