用户名: 密码: 验证码:
熔覆电流对FeCoCrNiMn高熵合金涂层组织与性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Cladding Current on Microstructure and Properties of FeCoCrNiMn High Entropy Alloy Coatings
  • 作者:魏民 ; 万强 ; 李晓峰 ; 朱方涛 ; 黄永俊 ; 杨兵
  • 英文作者:WEI Min;WAN Qiang;LI Xiao-feng;ZHU Fang-tao;HUANG Yong-jun;YANG Bing;School of Engineering,Huazhong Agricultural University;School of Power & Mechanical Engineering,Wuhan University;
  • 关键词:等离子熔覆 ; FeCoCrNiMn ; 高熵合金 ; 熔覆电流 ; 组织 ; 显微硬度
  • 英文关键词:plasma cladding;;FeCoCrNiMn;;high entropy alloy;;cladding current;;microstructure;;microhardness
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:华中农业大学工学院;武汉大学动力与机械学院;
  • 出版日期:2019-06-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金(U1832127)~~
  • 语种:中文;
  • 页:BMJS201906017
  • 页数:6
  • CN:06
  • ISSN:50-1083/TG
  • 分类号:152-157
摘要
目的研究等离子熔覆电流对FeCoCrNiMn高熵合金涂层组织与性能的影响。方法采用等离子堆焊工艺在65Mn钢基体上制备等摩尔比的FeCoCrNiMn高熵合金涂层。通过观察涂层的宏观表面特征来判断等离子熔覆技术制作高熵合金涂层的宏观效果。利用金相显微镜(OM)、扫描电镜(SEM)以及X射线衍射技术(XRD)观察涂层显微组织,并分析涂层的成分和相组成。采用维氏硬度显微测试计测量合金涂层的表面硬度和基体至涂层的层深硬度。结果等离子熔覆技术制备的合金涂层无裂纹,涂层平均厚度达到2 mm。涂层元素与熔覆粉末元素比例一致,除去部分Fe元素由基体进入涂层之外,涂层依旧为单相FCC固溶体结构,组织形态为枝晶。涂层与基体结合处可以观察到明显的柱状晶区和热影响区(HAZ)。随着电流的增大,枝晶组织逐渐变粗,而FeCoCrNiMn高熵合金涂层的表面硬度逐渐减小,在190 A处,硬度发生突变达到最大值366.3HV,170A处为最小值258.78HV。沿层深方向,涂层硬度变化不大,热影响区内由上到下,硬度先增大后减小。结论等离子熔覆技术制备高熵合金涂层有明显的优势,且具有制作大面积表面涂层的潜力,涂层厚度可以达到毫米级。电流大小改变,FCC相组成没有发生改变,而组织结构发生改变,随着电流变大,枝晶组织变粗,涂层硬度逐渐下降。
        The work aims to study the effect of plasma cladding current on the structure and properties of FeCoCrNiMn high-entropy alloy coatings. The FeCoCrNiMn high-entropy alloy coating with equimolar ratio was prepared on 65 Mn steel substrate by plasma surfacing process. Firstly, the macroscopic effect of plasma cladding technology to prepare high-entropy alloy coating was determined by observing the macroscopic surface characteristics of the coating. Metallographic microscope(OM), electron microscopy(SEM) and X-ray diffraction(XRD) were used to observe the microstructure and analyze the composition and phase composition of the coating. Meanwhile the surface hardness of the alloy coating and the deep hardness of the layer from the substrate to the coating were measured by a Vickers hardness micrometer. The alloy coatings prepared were crack-free and had an average coating thickness of 2 mm. The ratio of coating elements was consistent with that of cladding power element. Except that some Fe element entered the coating from the substrate, the structure was still FCC solid solution phase and the morphology was dendritic crystal. Distinct columnar crystal zone and heat affected zone(HAZ) could be observed at the junction of the coating and the substrate. As the current increased, the dendrite structure became thicker. With the increase of current, the surface hardness of FeCoCrNiMn high-entropy alloy coating gradually decreased. The hardness was abrupt to reach the maximum value of 366.3 HV at 190 A, and the minimum was 258.78 HV at 170 A. The change of hardness along the depth of the layer was not obvious. With the heat affected zone from top to bottom, the hardness first increased and then decreased. Plasma cladding technology has obvious advantages in the preparation of high-entropy alloy coatings and has the potential to produce large-area surface coatings with thicknesses up to the millimeter. The change in current magnitude causes the FCC phase composition to change without changing the organization structure. As the current increases, the dendrite structure becomes thicker and the coating hardness decreases.
引文
[1]GUO S,NG C,LU J,et al.Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys[J].Journal of applied physics,2011,109(10):213.
    [2]YEH J W,CHEN S K,LIN S J,et al.Nanostructured high-entropy alloys with multiple principal elements:Novel alloy design concepts and outcomes[J].Advanced engineering materials,2004,6(5):299-303.
    [3]ZHANG Z J,MAO M M,WANG J,et al.Nanoscale origins of the damage tolerance of the high-entropy alloy Cr Mn Fe Co Ni[J].Nature communications,2015,6:10143.
    [4]POULIA A,GEORGATIS E,LEKATOU A,et al.Microstructure and wear behavior of a refractory high entropy alloy[J].International journal of refractory metals and hard materials,2016:57:50-63.
    [5]MA S G,ZHANG Y.Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy[J].Materials science&engineering A,2012,532(1):480-486.
    [6]GUO N N,WANG L,LUO L S,et al.Hot deformation characteristics and dynamic recrystallization of the MoNbHfZrTi refractory high-entropy alloy[J].Materials science&engineering A,2016,651(3):698-707.
    [7]CHOU H P,CHANG Y S,CHEN S K,et al.Microstructure,thermophysical and electrical properties in AlxCoCrFeNi(0≤x≤2)high-entropy alloys[J].Materials science and engineering B,2009,163(3):184-189.
    [8]ZHANG C,WU B Q,WANG Q T,et al.Microstructure and properties of FeCrNiCoMnBx high-entropy alloy coating prepared by laser cladding[J].Rare metal materials and engineering,2017,46(9):2639-2644.
    [9]MURTY B S,YEH J W,RANGANATHAN S.Highentropy alloys[M].[s.l]:Butterworth-Heinemann,2014.
    [10]ZHANG Yong,ZUO Ting-ting,TANG Zhi,et al.Microstructures and properties of high-entropy alloys[J].Progress in materials science,2014,61:1-93.
    [11]MIRACLE D B,SENKOV O N.A critical review of high entropy alloys and related concepts[J].Acta materialia2017,122:448-511.
    [12]王虎,王智慧.等离子熔覆法制备AlxCo Cr Fe Ni高熵合金微观组织与性能研究[J].材料导报,2018,32(4):589-592.WANG Hu,WANG Zhi-hui.Microstructure and properties of AlxCo CrFeNi high-entropy alloy prepared by plasma cladding[J].Material review,2018,32(4):589-592.
    [13]郑必举,魏金宇,蒋业华,等.激光熔覆NiCoFeCrTi高熵合金涂层及其耐磨性能研究[J].激光技术,2016,40(3):432-435.ZHENG Bi-ju,WEI Jin-yu,JIANG Ye-hua,et al.Laser cladding NiCoFeCrTi high entropy alloy coating and its wear resistance[J].Laser technology,2016,40(3):432-435.
    [14]王夺.CoCrFeNiCu系高熵合金的组织和力学性能[D].沈阳:沈阳理工大学,2014.WANG Duo.Microstructure and mechanical properties of CoCrFeNiCu high entropy alloys[D].Shenyang:Shenyang University of Technology,2014.
    [15]MA D C,YAO M J,PRADEEP K G,et al.Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys[J].Acta materialia,2015,98:288-296.
    [16]ZHANG Y,ZUO T T,TANG Z,et al.Microstructures and properties of high-entropy alloys[J].Progress in materials science,2014,61:1-93.
    [17]YU Y,XIE F,ZHANG T,et al.Microstructure control and corrosion properties of AlCoCrFeNiTi0.5 high-entropy alloy[J].Rare metal materials and engineering,2012,41(5):862-866.
    [18]LAI C H,LIN S J,YEH J W,et al.Preparation and characterization of AlCrTaTiZr multi-element nitride coatings[J].Surface&coatings technology,2006,201(6):3275-3280.
    [19]SHEN W J,TSAI M H,YEH J W.Machining performance of sputter-deposited(Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 highentropy nitride coatings[J].Coatings,2015,5(3):312-325.
    [20]QIU X W,LIU C G.Microstructure and properties of Al2Cr Fe Co Cu Ti Nix high-entropy alloys prepared by laser cladding[J].Journal of alloys and compounds,2013,553:216-220.
    [21]HUANG C,ZHANG Y,SHEN J,et al.Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti-6Al-4V alloy[J].Surface&coatings technology,2011,206(6):1389-1395.
    [22]邹朋津,董刚,姚建华.激光熔覆制备Cr Ni Al Co Mo Bx系高熵合金涂层的组织与性能研究[J].应用激光,2015,35(1):1-6.ZOU Peng-jin,DONG Gang,YAO Jian-hua.Study on microstructure and properties of CrNiAlCoMoBx high entropy alloy coatings prepared by laser cladding[J].Application of laser,2015,35(1):1-6.
    [23]隽永飞,李军,蒋云强,等.激光熔覆制备高熵合金涂层的研究进展[J].应用激光,2018(1):130-135.JUN Yong-fei,LI Jun,JIANG Yun-qiang,et al.Progress in the preparation of high-entropy alloy coatings by laser cladding[J].Application of laser,2018(1):130-135.
    [24]黄纯可,李伟,刘平,等.磁控溅射法制备AlxCo Cr Fe Ni高熵合金薄膜的微观组织和力学性能研究[J].功能材料,2017(6):6144-6148.HUANG Chun-ke,LI Wei,LIU Ping.Microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloy films prepared by magnetron sputtering[J].Functional materials,2017(6):6144-6148.
    [25]YAO Chen-zhong.Electrochemical synthesis and magnetic studies of Ni-Fe-Co-Mn-Bi-Tm high entropy alloy film[J].Chemical Research in Chinese Universities,2010,26(4):640-644.
    [26]严大考,张洁溪,唐明奇,等.等离子熔覆技术的研究进展[J].热加工工艺,2015(4):20-24.YAN Da-kao,ZHANG Jie-xi,TANG Ming-qi,et al.Progress in plasma cladding technology[J].Hot processing technology,2015(4):20-24.
    [27]刘玉林,罗永春,赵丹,等.高熵合金(CoCrFeMnNi)/铜真空扩散连接的界面行为及接头性能研究[J].机械工程学报,2017,53(2):84-91.LIU Yu-lin,LUO Yong-chun,ZHAO Dan,et al.Interface behavior and joint properties of CoCrFeMnNi/copper vacuum diffusion bonding[J].Journal of mechanical engineering,2017,53(2):84-91.
    [28]ZHANG S,WU C L,YI J Z,et al.Synthesis and characterization of FeCoCrAlCu high-entropy alloy coating by laser surface alloying[J].Surface and coatings technology,2015,262:64-69.
    [29]翁子清,姚建华,董刚,等.退火对激光熔覆制备Fe Cr Ni Co Mn高熵合金涂层组织与性能的影响[J].电加工与模具,2014(2):38-42.WENG Zi-qing,YAO Jian-hua,DONG Gang,et al.Effect of annealing on microstructure and properties of FeCrNiCoMn high-entropy alloy coating prepared by laser cladding[J].Electromachining&mould,2014(2):38-42.
    [30]PHILIPPON D,GODINHO V,NAGY P M,et al.Endurance of TiAlSiN coatings:Effect of Si and bias on wear and adhesion[J].Wear,2011,270(7-8):541-549.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700