用户名: 密码: 验证码:
风力发电机组防雷技术进展综述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review of Lightning Protection Technique Progress of Wind Turbines
  • 作者:施广全 ; 张义军 ; 陈绍东 ; 张阳 ; 郑栋
  • 英文作者:SHI Guangquan;ZHANG Yijun;CHEN Shaodong;ZHANG Yang;ZHENG Dong;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)/Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration,Nanjing University of Information Science and Technology;State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences;Institute of Atmospheric Sciences, Fudan University;Guangzhou Institute of Tropical and Marine Meteorology,China Meteorological Administration;
  • 关键词:风机 ; 防雷技术 ; 直接雷击 ; 雷电感应 ; 接地技术 ; 主动避让 ; 野外雷电试验
  • 英文关键词:wind turbine;;lightning protection technique;;direct lightning stroke;;lightning induction;;earthing technology;;active avoidance;;field lightning test
  • 中文刊名:DWJS
  • 英文刊名:Power System Technology
  • 机构:南京信息工程大学气象灾害预报预警与评估协同创新中心/中国气象局气溶胶与云降水重点开放实验室;中国气象科学研究院灾害天气国家重点实验室;复旦大学大气科学研究院;中国气象局广州热带海洋气象研究所;
  • 出版日期:2019-04-22 15:02
  • 出版单位:电网技术
  • 年:2019
  • 期:v.43;No.428
  • 基金:国家重点研发计划项目(2017YFC1501506);; 国家自然科学基金项目(41775007,41775009);; 中国气象科学研究院基本科研业务费(2018Z003)~~
  • 语种:中文;
  • 页:DWJS201907031
  • 页数:11
  • CN:07
  • ISSN:11-2410/TM
  • 分类号:269-279
摘要
到2017年,全球风电装机容量已经达到5.39亿kW,中国风电装机容量已经达到1.88亿kW,位居世界第一。雷电是造成风力发电机损坏的最主要的自然灾害之一。通过对风机雷击损坏案例的统计分析,发现风机桨叶损坏约占总数的20%~28%,机电控制系统约占70.5%~71%。完整介绍了传统的风机防雷技术措施,主要包括安装接闪器、接地、等电位连接、安装电涌保护器(surge protective device,SPD)、屏蔽等。指出了风机防雷设计施工中存在的主要问题,如闪电通道与风机连接的规律尚未完全掌握、风机内部电子电气系统所受自然闪电感应电流的特征与实验室内使用的测试冲击电流存在较大差别。风机雷电试验结果表明,风机钢制塔筒对雷电低频部分的屏蔽效果较好,双绞敷设方式可有效减小对雷电能量的耦合。建议通过开展风机在自然闪电条件下的科学试验来研究风机防雷的基础性问题,从而有效提高风机防雷的技术水平。
        By the end of 2017, the total installed wind power capacity reaches 5.39×108 kW over the world and it reaches 1.88×108 kW in China, occupying the first place in the world. Lightning is one of the most serious natural disasters damaging wind turbines. This paper analyzes the law of wind turbine lightning stroke through the statistics of wind turbine lightning disaster cases. In all cases of wind turbine damage caused by lightning, blade damage comprises about 20%~28% of the total and electrical and electronic system damage is about 70.5%~71%. This paper presents the traditional lightning protection technology for wind turbines completely, including air-termination system, earthing system, equipotential connection, surge protective device, shielding, etc. The paper points out the main problems in design and construction of lightning protection of wind turbines. For example, the rules of lightning channel connection with wind turbine are not yet fully mastered. The characteristics of the current induced by natural lightning in the electronic and electrical systems inside wind turbines are very different from those of the impulse current used in laboratory tests. The results of lightning test of wind turbine show that the steel tower of wind turbine has goodshielding effects on the low-frequency components of lightning electromagnetic pulse. Twisted-pair laying can reduce the coupling degree to lightning energy effectively. This paper suggests to study the fundamental problems of lightning protection for wind turbines with scientific experiments under conditions of natural lightning, to improve the lightning protection level for wind turbines radically.
引文
[1]IEC.IEC TR 61400-24 wind turbine generator system,part 24:lightning protection[S].2002.
    [2]施跃文,高辉,陈钟.国外特大型风力发电机组技术综述[J].电网技术,2008,32(18):87-91.Shi Yuewen,Gao Hui,Chen Zhong.A summary on technical features of overseas multi-MW wind turbines[J].Power System Technology,2008,32(18):87-91(in Chinese).
    [3]Diendorfer G.On the risk of upward lightning initiated from wind turbines[C]//2015 IEEE 15th International Conference on Environment and Electrical Engineering(EEEIC).Rome,Italy:IEEE,2015:872-876.
    [4]Candela G A,Cummins K L,Madsen S F,et al.Multiple lightning discharges in wind turbines associated with nearby cloud-to-ground lightning[J].IEEE Transactions on Sustainable Energy,2015,6(2):526-533.
    [5]Sarajcev P.Assessment of lightning stroke incidence to modern wind turbines[C]//2010 International Conference on Software,Telecommunications and Computer Networks(SoftCOM).Split,Yugoslavia,Dubrovnik,Croatia:IEEE,2010:97-101.
    [6]Ishii M,Saito M,Natsuno D,et al.Lightning incidence on wind turbines in winter[C]//2014 International Conference on Lightning Protection(ICLP).Shanghai,China:IEEE,2014:1734-1738.
    [7]Miki M,Miki T,Shindo T,et al.Multi ground termination upward flash in winter lightning at the coastal area of the Sea of Japan[C]//2012 International Conference on Lightning Protection(ICLP).Vienna,Austria:IEEE,2012:1-8.
    [8]Rachidi F,Rubinstein M,Montanya J,et al.A review of current issues in lightning protection of new-generation wind-turbine blades[J].IEEE Transactions on Industrial Electronics,2008,55(6):2489-2496.
    [9]Radicevic B M,Savic M.S.Experimental research on the influence of wind turbine blade rotation on the characteristics of atmospheric discharges[J].IEEE Transactions on Energy Conversion,2011,26(4):1181-1190.
    [10]Anna C G,Madsen S F,Nissim M,et al.Lightning damage to wind turbine blades from wind farms in U.S.[J].IEEE Transactions on Power Delivery,2014,PP(99):1-1.
    [11]Yasuda Y,Yamamoto K,Honjo N,et al.Classification of wind turbine blade incidents regarding lightning risk management[C]//2014International Conference on Lightning Protection(ICLP).Shanghai,China:IEEE,2014:986-991.
    [12]Yoh Y,Shigeru Y.Proposal of lightning damage classification to wind turbine blades[C]//2011 7th Asia-Pacific International Conference on Lightning(APL).Chengdu,China:IEEE,2011:368-371.
    [13]周莹,张娜,董振,等.风电上网电价机制研究[J].华北电力大学学报,2012,39(5):97-104.Zhou Ying,Zhang Na,Dong Zhen,et al.Wind power feed-in-tariff price of consumptive[J].Journal of North China Electric Power University,2012,39(5):97-104(in Chinese).
    [14]曾嵘,周旋,王泽众,等.国际防雷研究进展及前沿述评[J].高电压技术,2015,41(1):1-13.Zeng Rong,Zhou Xuan,Wang Zezhong,et al.Review of research advances and fronts on international lightning and protection[J].High Voltage Engineering,2015,41(1):1-13(in Chinese).
    [15]潘艺,周鹏展,王进.风力发电机叶片技术发展概述[J].湖南工业大学学报,2007,21(3):48-51.Pan Yi,Zhou Pengzhan,Wang Jin.Overview of the technical development for the blade of wind power-generation[J].Journal of Hunan University of Technology,2007,21(3):48-51(in Chinese).
    [16]闫江燕,张黎,李庆民,等.风机桨叶用PVC和巴塞木雷击电弧损伤的分子模拟研究[J].中国电机工程学报,2017,37(1):292-300.Yan Jiangyan,Zhang Li,Li Qingmin,et al.Molecular simulation on the degradation characteristics of PVC and balsa wood used in wind turbine blade under lightning induced arc[J].Proceedings of the CSEE,2017,37(1):292-300(in Chinese).
    [17]洪华芳,周歧斌,边晓燕.风力发电机叶片的雷击损伤与雷电保护[J].华东电力,2009,37(10):1778-1781.Hong Huafang,Zhou Qibin,Bian Xiaoyan.Lightning damages and protection for wind turbine blades[J].East China Electric Power,2009,37(10):1778-1781(in Chinese).
    [18]赵海翔,王晓蓉.风电机组的雷击机理与防雷技术[J].电网技术,2003,27(7):12-15,39.Zhao Haixiang,Wang Xiaorong.Lightning stroke mechanism of wind turbine generators and its lightning protection measures[J].Power System Technology,2003,27(7):12-15,39(in Chinese).
    [19]康春华,张小青,王芳.风电机组的防雷问题[J].山西电力,2006(6):62-64.Kang Chunhua,Zhang Xiaoqing,Wang Fang.Lightning protection of wind turbine generators[J].Shanxi Electric Power,2006(6):62-64(in Chinese).
    [20]Onuma M.The effect of overhead ground wires of a lightning protection system for a wind turbine generator[C]//2014 International Conference on Lightning Protection(ICLP).Shanghai,China:IEEE,2014:796-800.
    [21]中国机械工业联合会.GB 50057-2010建筑物防雷设计规范[S].北京:中国计划出版社,2011.
    [22]程浩,李红年,谢虹,等.风力发电机组的防雷技术[J].成都大学学报(自然科学版),2011,30(1):44-46,51.Cheng Hao,Li Hongnian,Xie Hong,et al.Lightning protection technology of wind driven generator units[J].Journal of Chengdu University(Natural Science Edition),2011,30(1):44-46,51(in Chinese).
    [23]Napolitano F,Paolone M,Borghetti A,et al.Models of wind-turbine main-shaft bearings for the development of specific lightning protection systems[J].IEEE Transactions on Electromagnetic Compatibility,2011,53(1):99-107.
    [24]Yamamoto K,Yanagawa S,Ueda T.Verifications of transient grounding impedance measurements of a wind turbine generator system using the FDTD method[C]//2011 International Symposium on Lightning Protection(XI SIPDA).Fortaleza,Brazil:IEEE,2011:255-260.
    [25]Yamamoto K,Sumi S.EMTP models of a wind turbine grounding system[C]//2014 International Conference on Lightning Protection(ICLP).Shanghai,China:IEEE,2014:845-849.
    [26]Niihara J,Ametani A,Yamamoto K.Transient grounding characteristics of wind turbine with counterpoise[C]//2012 AsiaPacific Symposium on Electromagnetic Compatibility(APEMC).Singapore:IEEE,2012:869-872.
    [27]Yamamoto K,Yanagawa S,Yamabuki K,et al.Analytical surveys of transient and frequency-dependent grounding characteristics of a wind turbine generator system on the basis of field tests[J].IEEETransactions on Power Delivery,2010,25(4):3035-3043.
    [28]Yamamoto K,Yanagawa S.Transient grounding characteristics of wind turbines[C]//2012 International Conference on Lightning Protection(ICLP).Vienna,Austria:IEEE,2012:1-5.
    [29]Yanagawa S,Natsuno D,Yamamoto K.A measurement of transient grounding characteristics of a wind turbine generator system and its considerations[C]//2011 7th Asia-Pacific International Conference on Lightning(APL).Chengdu,China:IEEE,2011:401-404.
    [30]Malcolm N,Aggarwal R.Mitigation of transient overvoltages under lightning in networks with wind farms connection using MOV surge arresters[C]//Power and Energy Society General Meeting(PES).Vancouver,Canada:IEEE,2013:1-5.
    [31]Araneo R,Lovat G,Celozzi S.Transient response of grounding systems of wind turbines under lightning strikes[C]//2014International Symposium on Electromagnetic Compatibility(EMCEurope).Gothenburg,Sweden:IEEE,2014:1080-1085.
    [32]Ahmed M R,Kumar Das U.Lightning surge response of wind turbine grounding at low resistivity soil[C]//2014 International Conference on Electrical and Computer Engineering(ICECE).Dhaka,Bangladesh:IEEE,2014:599-602.
    [33]Yoh Y,Toshiaki U.FDTD transient analysis of ring earth electrode[C]//Proceedings of the 41st International Universities Power Engineering Conference(UPEC’06).Newcastle upon Tyne,UK:IEEE,2006:133-136.
    [34]Elmghairbi A,Haddad A,Griffiths H.Potential rise and safety voltages of wind turbine earthing systems under transient conditions[C]//2009 20th International Conference and Exhibition on Electricity Distribution-Part 1(CIRED).Prague,Czech Republic:IET,2009:1-4.
    [35]Kazemi R,Sheshyekani K,Sadeghi S H H,et al.Wind turbine grounding system frequency-dependent modeling for lightning transient studies[C]//IECON 2012-38th Annual Conference on IEEEIndustrial Electronics Society.Montreal,Canada:IEEE,2012:1178-1182.
    [36]Cavka D,Mora N,Rachidi F.A comparison of frequency-dependent soil models:application to the analysis of grounding systems[J].IEEETransactions on Electromagnetic Compatibility,2014,56(1):177-187.
    [37]Yamamoto K,Sumi S.Transient grounding characteristics of a wind turbine foundation with grounding wires and plates[C]//2014 IEEEInternational Symposium on Electromagnetic Compatibility(EMC).Raleigh,USA:IEEE,2014:570-575.
    [38]Yamamoto K,Niihara J,Yanagawa S.Grounding characteristics of a wind turbine measured immediately after its undergrounding[C]//2012 Asia-Pacific Symposium on Electromagnetic Compatibility(APEMC).Singapore:IEEE,2012:861-864.
    [39]邓长征,彭永康,邱立,等.风电机组典型接地装置的降阻措施冲击试验研究[J].高压电器,2017,53(10):158-163.Deng Changzheng,Peng Yongkang,Qiu Li,et al.Impulse test study on decreasing resistance measures of typical grounding devices of wind turbine generators[J].High Voltage Apparatus,2017,53(10):158-163(in Chinese).
    [40]颜旭,张义军,陈绍东,等.1次人工触发闪电引起的临近地网电位升高及其特征分析[J].高电压技术,2017,43(5):1642-1649.Yan Xu,Zhang Yijun,Chen Shaodong,et al.Ground potential rise between the adjacent ground networks based on one artificially triggered lightning[J].High Voltage Engineering,2017,43(5):1642-1649(in Chinese).
    [41]郭在华,朱良,陈绍东,等.共用地网地电位升高观测及特征分析[J].高电压技术,2016,42(11):3488-3494.Guo Zaihua,Zhu Liang,Chen Shaodong,et al.Observation and characteristic analysis of ground potential rise in the common ground network[J].High Voltage Engineering,2016,42(11):3488-3494(in Chinese).
    [42]朱良,陈绍东,颜旭,等.基于触发闪电的共用地网雷电流分布观测及分析[J].高电压技术,2018,44(5):1715-1722.Zhu Liang,Chen Shaodong,Yan Xu,et al.Observation and analysis of lightning current distribution in the common ground network based on triggered lightning[J].High Voltage Engineering,2018,44(5):1715-1722(in Chinese).
    [43]Pyrgioti E,Bokogiannis V.Lightning impulse performance of a wind generator grounding grid considering soil ionization[C]//2011 7th Asia-Pacific International Conference on Lightning(APL).Chengdu,China:IEEE,2011:103-107.
    [44]Markovski B,Grcev L,Arnautovski-Toseva V.Transient characteristics of wind turbine grounding[C]//2012 International Conference on Lightning Protection(ICLP).Vienna,Austria:IEEE,2012:1-6.
    [45]Prousalidis J M,Philippakou M P,Hatziargyriou N D,et al.The effects of ionization in wind turbine grounding modeling[C]//200010th Mediterranean Electrotechnical Conference(MELECON).Lemesos,Cyprus:IEEE,2000:940-943.
    [46]张波,薛惠中,张宝全,等.雷击风机时叶片和塔筒对接地装置冲击接地特性的影响[J].高电压技术,2012,38(10):2675-2682.Zhang Bo,Xue Huizhong,Zhang Baoquan,et al.Influence of the wind vane tower barrel on the earthing connection’s impulse earthing characteristics in a lightning shock[J].High Voltage Engineering,2012,38(10):2675-2682(in Chinese).
    [47]Markovski B,Grcev L,Arnautovski-Toseva V.Step and touch voltages near wind turbine grounding during lightning strokes[C]//2012 International Symposium on Electromagnetic Compatibility(EMC Europe).Rome,Italy:IEEE,2012:1-6.
    [48]Esmaeilian A,Akmal A A S,Naderi M S.Wind farm grounding systems design regarding the maximum permissible touch&step voltage[C]//2012 11th International Conference on Environment and Electrical Engineering(EEEIC).Venice,Italy:IEEE,2012:74-79.
    [49]杨文斌,周浩.风电机组过电压保护与防雷接地设计[J].高电压技术,2008,34(10):2081-2085.Yang Wenbin,Zhou Hao.Design for overvoltage protection and lightning grounding of wind turbine[J].High Voltage Engineering,2008,34(10):2081-2085(in Chinese).
    [50]中国电力企业联合会.GB/T 50065-2011交流电气装置的接地设计规范[S].北京:中国计划出版社,2011.
    [51]Ahmed M R,Ishii M.Electromagnetic analysis of lightning surge response of interconnected wind turbine grounding system[C]//2011International Symposium on Lightning Protection(XISIPDA).Fortaleza,Brazil:IEEE,2011:226-231.
    [52]Ahmed M.R,Ishii M.Effectiveness of interconnection of wind turbine grounding influenced by interconnection wire[C]//2012 International Conference on Lightning Protection(ICLP).Vienna,Austria:IEEE,2012:1-6.
    [53]周蜜,樊亚东,郑钟楠,等.潮间带海上风电机组重力式基础接地特性[J].电网技术,2015,39(11):3320-3326.Zhou Mi,Fan Yadong,Zheng Zhongnan,et al.Grounding resistance characteristics of gravity foundations of offshore wind turbines in the intertidal zone[J].Power System Technology,2015,39(11):3320-3326(in Chinese).
    [54]张琳波,赵明.接地系统互连风场雷电浪涌分析[J].电瓷避雷器,2018(2):116-119,124.Zhang Linbo,Zhao Ming.Lightning surge analysis of wind farm with interconnected grounding system[J].Insulators and Surge Arresters,2018(2):116-119,124(in Chinese).
    [55]王俏俏,林琳,刘红霞,等.风电场中直击雷的防护和研究[J].电瓷避雷器,2017(6):105-108,114.Wang Qiaoqiao,Lin Lin,Liu Hongxia,et al.Research and protection of direct lightning strike in wind farm[J].Insulators and Surge Arresters,2017(6):105-108,114(in Chinese).
    [56]李显强,王建国,王宇,等.风电场电缆集电系统雷电暂态数值计算[J].高电压技术,2015,41(5):1566-1573.Li Xianqiang,Wang Jianguo,Wang Yu,et al.Lightning transient numerical calculation of cable power collection system in wind power plant[J].High Voltage Engineering,2015,41(5):1566-1573(in Chinese).
    [57]刘学忠,王贤宗,Li Yishan,等.风电场电缆集电网操作过电压的模拟试验和暂态分析[J].高电压技术,2014,40(1):61-66.Liu Xuezhong,Wang Xianzong,Li Yishan,et al.Simulating experiment and transient analysis on switching surges in cable collection grid of wind power plant[J].High Voltage Engineering,2014,40(1):61-66(in Chinese).
    [58]赵海翔,王晓蓉.风电机组的雷击过电压分析[J].电网技术,2004,28(4):27-29,72.Zhao Haixiang,Wang Xiaorong.Overvoltage analysis of wind turbines due to lightning stroke[J].Power System Technology,2004,28(4):27-29,72(in Chinese).
    [59]王晓辉,张小青.风电机组内电子设备的雷电电磁干扰分析[J].高电压技术,2009,35(8):2019-2023.Wang Xiaohui,Zhang Xiaoqing.Analysis of the lightning electromagnetic interference to electronic devices in wind generation systems[J].High Voltage Engineering,2009,35(8):2019-2023(in Chinese).
    [60]于同泽,于晶,李婷,等.基于场路结合思想的风电机组接地网冲击特性研究[J].现代电力,2010,27(6):58-61.Yu Tongze,Yu Jing,Li Ting,et al.Study on impulse characteristics of wind turbine grounding network based on field-circuit method[J].Modern Electric Power,2010,27(6):58-61(in Chinese).
    [61]陶世祺,张小青,王耀武,等.直接雷击时风电机组的暂态响应分析[J].太阳能学报,2017,38(10):2675-2682.Tao Shiqi,Zhang Xiaoqing,Wang Yaowu,et al.Analysis of transient responses on wind turbines during direct lightning strike[J].ACTAENERGIAE SOLARIS SINICA,2017,38(10):2675-2682(in Chinese).
    [62]陶世祺,张小青,王耀武,等.考虑后续雷击的风电机组雷电暂态研究[J].中国电机工程学报,2018,38(18):5326-5334.Tao Shiqi,Zhang Xiaoqing,Wang Yaowu,et al.Research of lightning transient responses on wind turbines during subsequent lightning strike[J].Proceedings of the CSEE,2018,38(18):5326-5334(in Chinese).
    [63]王国政,张黎,吴昊,等.海上风机一体化电磁暂态模型与雷电暂态过电压研究[J].电力自动化设备,2017,37(11):32-38.Wang Guozheng,Zhang Li,Wu Hao,et al.Electromagnetic transient integration model and transient overvoltage study of offshore wind turbine[J].Electric Power Automation Equipment,2017,37(11):32-38(in Chinese).
    [64]李庆民,郭子炘,张黎,等.大型风电场雷击防护研究面临的关键问题[J].中国电机工程学报,2018,38(18):5296-5306.Li Qingmin,Guo Zixin,Zhang Li,et al.Key issues with lightning protection research of the large-scale wind farms[J].Proceedings of the CSEE,2018,38(18):5296-5306(in Chinese).
    [65]郭子炘,李庆民,闫江燕,等.海上风电场雷击演化物理机制的研究综述[J].电气工程学报,2015,10(5):10-19.Guo Zixin,Li Qingmin,Yan Jiangyan,et al.Summary of research on physical evolution mechanism of lightning discharge of offshore wind farms[J].Journal of Electrical Engineering,2015,10(5):10-19(in Chinese).
    [66]任晓毓,张义军,吕伟涛,等.闪电先导随机模式的建立与应用[J].应用气象学报,2011,22(2):194-202.Ren Xiaoyu,Zhang Yijun,LüWeitao,et al.Establishment and application of random lightning leader model[J].Journal of Applied Meteorological Science,2011,22(2):194-202(in Chinese).
    [67]任晓毓.闪电先导与地物相互作用的模拟研究[D].北京:中国气象科学研究院,2010.
    [68]屈路,文习山,王羽,等.接闪器对旋转风机引雷能力影响的试验研究[J].高电压技术,2017,43(5):1628-1634.Qu Lu,Wen Xishan,Wang Yu,et al.Experimental study on the influence of the air terminal on triggered lightning ability of rotation wind turbine[J].High Voltage Engineering,2017,43(5):1628-1634(in Chinese).
    [69]文习山,屈路,王羽,等.叶片转动对风机引雷能力影响的模拟试验研究[J].中国电机工程学报,2017,37(7):2151-2158.Wen Xishan,Qu Lu,Wang Yu,et al.Experimental study of the influence of the blade rotation on triggered lightning ability of wind turbine’s blades[J].Proceedings of the CSEE,2017,37(7):2151-2158(in Chinese).
    [70]蓝磊,姒天军,王羽,等.雷电下转动风机叶片接闪特性模拟试验研究[J].电网技术,2018,42(4):1328-1334.Lan Lei,Si Tianjun,Wang Yu,et al.Experimental study on lightning discharge characteristic of wind turbine’s rotating blades[J].Power System Technology,2018,42(4):1328-1334(in Chinese).
    [71]郭子炘,李庆民,于万水,等.旋转状态下风机叶片雷击接闪特性的实验研究[J].中国电机工程学报,2018,38(16):4951-4959.Guo Zixin,Li Qingmin,Yu Wanshui,et al.Experimental study on lightning attachment manner of the rotating wind turbine blades[J].Proceedings of the CSEE,2018,38(16):4951-4959(in Chinese).
    [72]任瀚文,郭子炘,马宇飞,等.雷击风机叶片的跃变击距特性与定量表征[J].电工技术学报,2017,32(15):216-224.Ren Hanwen,Guo Zixin,Ma Yufei,et al.Quantitative characterization of the striking saltus distance of wind turbine blade[J].Transactions of China Electrotechnical Society,2017,32(15):216-224(in Chinese).
    [73]Madsen S F,Bertelsen K,Krogh T H,et al.Proposal of new zoning concept considering lightning protection of wind turbine blades[C]//2010 International Conference on Lightning Protection(ICLP).Cagliari,Italy:IEEE,2010:1121-1-1121-7.
    [74]Le Pironnec F,Aspas-Puertolas J.Electrostatic field and lightning zoning analysis of a windmill:study of current and innovative protection strategies[C]//2014 International Conference on Lightning Protection(ICLP).Shanghai,China:IEEE,2014:659-666.
    [75]Bagherian H,Karegar H.K.Effects of location,size and number of wind turbine receptors on blade lightning protection by voltage distribution analysis[C]//2011 International Conference on Advanced Power System Automation and Protection(APAP).Beijing,China:IEEE,2011:1343-1348.
    [76]王国政,张黎,郭子炘,等.基于雷电物理的风机叶片动态击距与电气几何模型[J].中国电机工程学报,2017,37(21):6427-6436.Wang Guozheng,Zhang Li,Guo Zixin,et al.Dynamic striking distance and electrical geometry model of wind turbine blades based on lightning physics[J].Proceedings of the CSEE,2017,37(21):6427-6436(in Chinese).
    [77]郭子炘,李庆民,任瀚文,等.基于雷电上行先导起始物理机制的风机叶片雷击概率评估模型[J].中国电机工程学报,2018,38(2):653-662.Guo Zixin,Li Qingmin,Ren Hanwen,et al.Probabilistic risk assessment of lightning strike on wind turbine blades based on the physical mechanism of lightning upward leader inception[J].Proceedings of the CSEE,2018,38(2):653-662(in Chinese).
    [78]Peesapati V,Cotton I.Lightning protection of wind turbines-a comparison of real lightning strike data and finite element lightning attachment analysis[C]//2009 SUPERGEN’09 International Conference on Sustainable Power Generation and Supply.Nanjing,China:IEEE,2009:1-8.
    [79]马宇飞,张黎,闫江燕,等.风机叶片雷击上行先导的起始物理机制与临界长度判据[J].中国电机工程学报,2016,36(21):5975-5982.Ma Yufei,Zhang Li,Yan Jiangyan,et al.Inception mechanism of lightning upward leader from the wind turbine blade and a proposed critical length criterion[J].Proceedings of the CSEE,2016,36(21):5975-5982(in Chinese).
    [80]张黎,张瑶,王国政,等.基于雷电物理学的多风机雷电屏蔽研究及风电场防雷布置[J].中国电机工程学报,2018,38(18):5335-5342.Zhang Li,Zhang Yao,Wang Guozheng,et al.Lightning shielding of multiple wind turbines based on lightning physics and optimized spatial allocation of wind farm[J].Proceedings of the CSEE,2018,38(18):5335-5342(in Chinese).
    [81]方超颖,李炬添,张曾,等.接地电阻对风机桨叶引雷能力影响模拟试验[J].电网技术,2015,39(6):1709-1713.Fang Chaoying,Li Jutian,Zhang Zeng,et al.Experimental study of the influence of the grounding resistance on triggered lightning abilities of wind turbine’s flabellum[J].Power System Technology,2015,39(6):1709-1713(in Chinese).
    [82]王宇,王建国,周蜜,等.双接闪器叶片风电机组缩比模型雷击附着特性[J].中国电机工程学报,2018,38(18):5307-5315.Wang Yu,Wang Jianguo,Zhou Mi,et al.Lightning attachment characteristic of wind turbine blade with two-receptors[J].Proceedings of the CSEE,2018,38(18):5307-5315(in Chinese).
    [83]Richter B,Crevenat V.Lightning and overvoltage protection of wind power farms[C]//2011 International Symposium on Lightning Protection(XI SIPDA).Fortaleza,Brazil:IEEE,2011:232-234.
    [84]Yang Shaojie,Chen Shaodong,Zhang Yijun,et al.Characteristics analysis of the induced overcurrent generated by close triggered lightning on the overhead transmission power line[J].Journal of Tropical Meteorology,2010,16(1):59-65.
    [85]Rousseau A,Xuyun Zang,Ming Tao.Multiple shots on SPDsadditional tests[C]//2014 International Conference on Lightning Protection(ICLP).Shanghai,China:IEEE,2014:997-1001.
    [86]Gong Ling,Yang Jun,Li Jie,et al.Intellegent lightning monitoring system for wind turbine generator[C]//2014 International Conference on Lightning Protection(ICLP).Shanghai,China:IEEE,2014:606-613.
    [87]Kawabata T,Yanagawa S,Takahashi H,et al.A development of a shunt lightning current measuring system using a Rogowski coil[C]//2013 International Symposium on Lightning Protection(XIISIPDA).Belo Horizonte,Brazil:IEEE,2013:283-286.
    [88]Kawabata T,Naito Y,Yanagawa S,et al.A development of a measurement system using a Rogowski coil to observe sprit lightning current flows inside and outside a wind turbine generator system[C]//2012 International Conference on Lightning Protection(ICLP).Vienna,Austria:IEEE,2012:1-5.
    [89]Wetter M,Kiefer A,Zirkel A.Lightning current monitoring system for wind turbines[C]//2011 International Symposium on Lightning Protection(XI SIPDA).Fortaleza,Brazil:IEEE,2011:251-254.
    [90]Kramer S G M,Leon F P,Hernandez Y N M,et al.Integration of a distributed fiber optic current sensor setup for lightning detection in wind turbines[C]//IMTC 2007-IEEE Instrumentation and Measurement Technology Conference.Warsaw,Poland:IEEE,2007:1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700