用户名: 密码: 验证码:
土壤水热与根系吸水模型研究进展及其在西藏研究展望
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress on models of soil water and heat and root water uptake and prospect in Tibet
  • 作者:刘伟 ; 徐冰 ; 汤鹏程 ; 李泽坤
  • 英文作者:LIU Wei;XU Bing;TANG Pengcheng;LI Zekun;College of Water Conservancy and Civil Engineering,Inner Mongolia Agricultural University;Institute of Water Resources for Pastoral Area,China Institute of Water Resources and Hydropower Research;
  • 关键词:西藏高寒地区 ; 土壤水热耦合 ; 根系吸水模型 ; 研究进展与展望
  • 英文关键词:high cold region of Tibet;;hydro-thermal coupling;;root water uptake modeling;;research progress and prospect
  • 中文刊名:XBSZ
  • 英文刊名:Journal of Water Resources and Water Engineering
  • 机构:内蒙古农业大学水利与土木建筑工程学院;中国水利水电科学研究院牧区水利科学研究所;
  • 出版日期:2019-06-15
  • 出版单位:水资源与水工程学报
  • 年:2019
  • 期:v.30;No.145
  • 基金:中国水利水电科学研究院科研专项(MK2017J02);; 国家自然科学基金项目(51579158、51609154)
  • 语种:中文;
  • 页:XBSZ201903040
  • 页数:7
  • CN:03
  • ISSN:61-1413/TV
  • 分类号:257-263
摘要
在土壤根区水分运动规律的研究中,通常以土壤水热耦合模型来定量描述和预测土壤水分变化规律,以根系吸水模型来模拟作物根区根系吸水机理及过程。西藏高寒地区低压低氧、强辐射、近地层冷热交换频繁,加之土层稀薄,浅层土壤水转化过程复杂,作物生长受水热胁迫影响较为明显,作物根区的水热耦合作用对根系吸水及能量传输和物质运移影响显著。为了进一步探求西藏地区特殊水热条件下的根区水热运移机理,摸清西藏高寒区作物根系吸水规律,就国内外土壤水热耦合模型和根系吸水模型的相关研究做了综述,针对西藏地区特有的水热条件,建议将水热耦合模型与根系吸水模型结合应用,构建考虑水热耦合因素的根系吸水模型,以更好地适应当地实际,揭示根系土壤水分运动规律。
        In the study of water transport in root zone,the coupled model of soil water and heat is usually used to describe and predict soil water transport quantitatively,and the root water uptake model is used to simulate the process of root water uptake. With low pressure,low oxygen,strong radiation,and frequent exchange of cold and heat in the surface layers and thin soil layers,soil water transport in surface soil is complex and crop growing is affected by water and heat greatly. The root water uptake,energy transfer and substance migration are affected by hydro-thermal combination remarkably. In order to further explore the principle of hydro-thermal migration in the root zone and understand the characteristics of root water uptake in Tibet,the studies about model coupling soil water and heat and model of root water uptake in China and abroad are reviewed. In view of the unique hydrothermal conditions in Tibet,it is suggested to combine the coupled model of soil water and heat with the root water uptake model to build a root water absorption model considering the hydro-thermal coupling factors,so as to better adapt to the local reality and reveal the root soil water movement law.
引文
[1]雷志栋,杨诗秀,等.土壤水动力学[M].北京:清华大学出版社,1988.
    [2]郭向红,孙西欢,马娟娟.根系吸水模型参数的混合遗传算法估算方法[J].农业机械学报,2009,40(8):80-85.
    [3]汤鹏程,徐冰,李泽坤,等.西藏高寒区低温融雪水灌溉研究进展与展望[J].排灌机械学报,2018,36(10):1029-1034.
    [4]郑和祥,郭克贞,郝万龙.作物生长指标与土壤水分状况及地温关系研究[J].水土保持研究,2011,18(3):210-212+216.
    [5]徐冰,汤鹏程,李奇,等.基于CROPWAT模型的拉萨地区燕麦优化灌溉制度研究[J].干旱地区农业研究,2015,33(6):35-39+183.
    [6]徐冰,邬佳宾,郭克贞,等.西藏牧区生态水利研究进展[J].水资源与水工程学报,2012,23(3):84-86+90.
    [7]徐冰,田德龙,郭克贞,等.西藏高寒牧区燕麦耗水量与灌溉制度初步研究[J].节水灌溉,2013(3):57-59+62.
    [8]BUCHINGHAM E. Studies on the movement of soil moisture[J]. U. S. Department of Agriculture,Bureau of Soils,1907,38.
    [9]RICHARDS L A. Capillary conduction of liquids in porous mediums[J]. Physic,1931,1(5):318-333.
    [10]PHILIP J R,DE VRIES D A. Moisture movement in porous materials under temperature gradient[J]. American Geophysical Union,1957,38(2):222-232.
    [11]HALAN R L. Analysis of coupled heat-fluid transport in partially frozen soil[J]. Water Resources Research,1973,9(5):1314-1323.
    [12]于炜,刘廷玺.科尔沁沙地坨甸相间地区冻融期土壤水热运移规律数值分析[D].呼和浩特:内蒙古农业大学,2011.
    [13]岳汉森.土壤在冻融过程中水-热-盐耦合运移数学模型之初探[J].冰川冻土,1994,16(4):308-313.
    [14]胡和平,叶柏生,周余华,等.考虑冻土的陆面过程模型及其在青藏高原GAME/Tibet试验中的应用[J].中国科学(D辑:地球科学),2006,36(8):755-766.
    [15]李瑞平,史海滨,赤江刚夫,等.基于水热耦合模型的干旱寒冷地区冻融土壤水热盐运移规律研究[J].水利学报,2009,40(4):403-412.
    [16]刘畅,陈晓飞,苑杰,等.冻结条件下土壤水热耦合迁移的数值模拟[J].水电能源科学,2010,28(5):94-97.
    [17]彭振阳,黄介生,曾文治,等.季节性冻融土壤水分运动规律[J].武汉大学学报,2011,44(6):696-700.
    [18]付强,蒋睿奇,王子龙,等.不同积雪覆盖条件下冻融土壤水分运动规律研究[J].农业机械学报,2015,46(10):152-159.
    [19]奚茜,盛炎平,王爱文.土壤水热耦合模型全隐式差分格式及其数值模拟[J].北京信息科技大学学报,2016,31(1):48-54.
    [20]牛国跃,孙菽芬,洪钟祥.沙漠土壤和大气边界层中水热交换和传输的数值模拟研究[J].气象学报,1997,55(4):892-901.
    [21]马金珠,张惠昌,易立新,等.腾格里沙漠包气带水、汽、热运动耦合模型及水热状况模拟[J].中国沙漠,1998,18(4):340-345.
    [22]SUN Shufen,ZHANG Xia,WEI Guoan. A simplified version of the coupled heat and moisture transport model[J].Global and Planetary Change,2003,37(3):265-276.
    [23]LIU B C,LIU W,PENG S W. Study of heat and moisture transfer in soil with a dry surface layer[J]. International Journal of Heat and Mass Transfer,2005,48(21-22):4579-4589.
    [24]BITTELLI M,VENTURA F,CAMPBELL G S,et al. Coupling of heat,water vapor,and liquid water fluxes to compute evaporation in bare soils[J]. Journal of Hydrology(Amsterdam),2008,362(3-4):191-205.
    [25]朱绪超,邵明安.青藏高原土壤水分研究进展[J].土壤通报,2015,46(6):1523-1528.
    [26]赵林,李韧,丁永建.唐古拉地区活动层土壤水热特征的模拟研究[J].冰川冻土,2008,30(6):930-937.
    [27]刘杨,赵林,李韧.基于SHAW模型的青藏高原唐古拉地区活动层土壤水热特征模拟[J].冰川冻土,2013,35(2):280-290.
    [28]郭东林,杨梅学. SHAW模式对青藏高原中部季节冻土区土壤温、湿度的模拟[J].高原气象,2010,29(6):1369-1377.
    [29]陈晓磊,杨梅学,万国宁,等. CLM3和SHAW模式在青藏高原中部NMQ站的模拟研究[J].冰川冻土,2013,35(2):291-300.
    [30]夏坤,罗勇,李伟平.青藏高原东北部土壤冻融过程的数值模拟[J].科学通报,2011,56(22):1828-1838.
    [31]张伟,王根绪,周剑,等.基于Coup Model的青藏高原多年冻土区土壤水热过程模拟[J].冰川冻土,2012,34(5):1099-1109.
    [32]胡国杰,赵林,李韧,等.基于Coup Model模型的冻融土壤水热耦合模拟研究[J].地理科学,2013,33(3):356-362.
    [33]潘永洁,吕世华,高艳红,等.砾石对青藏高原土壤水热特性影响的数值模拟[J].高原气象,2015,34(5):1224-1236.
    [34]马琴,刘新,李伟平,等.青藏高原夏季土壤有机质及砾石影响水热传输特性的数值模拟[J].大气科学,2014,38(2):337-351.
    [35]杨培岭,郝仲勇.植物根系吸水模型的发展动态[J].中国农业大学学报,1999(2):67-73.
    [36]GARDNER W R. Dynamic aspects of water availability to plants[J]. Soil Science,1960,89(2):63-73.
    [37]MOLZ F J. Water transport in the soil root system:Transient analysis[J]. Water Resources Research,1976,12:805-807.
    [38]赵成义.作物根系吸水特性研究进展[J].中国农业气象,2004,25(2):39-42.
    [39]HAINSWORTH J M,AYLMORE L A G. Water extraction by single plant roots1[J]. Soil Science Society of America Journal,1986,50(4):841-848.
    [40]NOVAK V. Estimation of soil-water extraction patters by roots[J]. Agricultural Water Management,1987,12(4):271-278.
    [41]康绍忠,刘晓明,熊运章.冬小麦根系吸水模式的研究[J].西北农林科技大学学报(自然科学版),1992,20(2):5-12.
    [42]罗远培,李韵珠.根土系统与作物水氮资源利用效率[M].北京:中国农业出版社,1996:35-45.
    [43]龚道枝,康绍忠,张建华,等.苹果树蒸发蒸腾量的测定和计算[J].沈阳农业大学学报,2004,35(Z1):429-431.
    [44]高晓瑜,霍再林,冯绍元,等.水盐胁迫条件下作物根系吸水模型研究进展及展望[J].中国农村水利水电,2013(1):45-48+54.
    [45]赵成义,黄俊梅,王玉潮,等.植物根系吸水特性研究[J].干旱区地理,1999,22(2):88-96.
    [46]邵爱军,李会昌.野外条件下作物根系吸水模型的建立[J].水利学报,1997,28(2):69-73.
    [47]HONERT T H V D. Water transport in plants as a catenary process[J]. Discussions of the Faraday Society,1948,3:146-153.
    [48]VRUGT J A,WIJK M T,HOPMANS J W,et al. One-,two-,and three-dimensional root water uptake functions for transient modeling[J]. Water Resources Res,2001,37(10):2457-2470.
    [49] HEINEN M. Compensation in root water uptake models combined with three-dimensional root length density distribution[J]. Vadose Zone Journal,2014,13(2):373-373.
    [50]SEPASKHAH A R,YARAMI N. Evaluation of macroscopic water extraction model for salinity and water stress in saffron yield production[J]. International Journal of Plant Production,2010,4(3):175-186.
    [51]LI Huijie,YI Jun,ZHANG Jiangguo,et al. Modeling of soil water and salt dynamics and its effects on root water uptake in Heihe arid wetland,Gansu,China[J]. 2015,7(12):2382-2401.
    [52]SKAGGS T H,VAN GENUCHTEN M T,SHOUSE P J,et al. Macroscopic approaches to root water uptake as function of water and salinity stress[J]. Agricultural Water Management,2006,89(1/2):140-149.
    [53]谭红朝,李秧秧.根系吸水的最小能量模型的实验验证与评价[J].水土保持通报,2008,28(1):50-53.
    [54]王玉阳,陈亚鹏.植物根系吸水模型研究进展[J].草业科学,2017,26(3):214-225.
    [55]李凯,高艳红,CHEN Fei,等.植被根系对青藏高原中部土壤水热过程影响的模拟[J].高原气象,2015,34(3):642-652.
    [56]徐满厚,刘敏,翟大彤,等.模拟增温对青藏高原高寒草甸根系生物量的影响[J].生态学报,2016,36(21):6812-6822.
    [57]李玉庆,张存,张文贤.土壤水分及氮素淋失胁迫下根系吸水过程的模拟[J].西北农林科技大学学报(自然科学版),2017,45(12):95-102.
    [58]汤鹏程,徐冰,高占义,等.西藏高海拔地区气象数据缺失条件下的ET0计算研究[J].水利学报,2017,48(9):1055-1063.
    [59]汤鹏程,徐冰,郭克贞,等.西藏高寒牧区灌溉人工草地节水高产综合技术研究[J].南水北调与水利科技,2013,11(5):128-131+171.
    [60]汤鹏程,徐冰,郭克贞,等.西藏高寒牧区燕麦生理指标与气象因子的关系研究[J].灌溉排水学报,2013,32(3):97-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700