用户名: 密码: 验证码:
改进型果蝇算法在压力传感器动态补偿的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of Improved Fruit-Fly Optimization Algorithm in Dynamic Compensation of Pressure Sensors
  • 作者:高杨 ; 韩太林 ; 王磊 ; 张永立
  • 英文作者:GAO Yang;HAN Tailin;WANG Lei;ZHANG Yongli;College of Electronic and Information Engineering,Changchun University of Science and Technology;The No.63850thTroop of PLA;
  • 关键词:果蝇优化算法 ; 搜索步长 ; 压力传感器 ; 动态补偿 ; 冲击波
  • 英文关键词:fruit-fly optimization algorithm;;search step;;pressure sensor;;dynamic compensation;;shock wave
  • 中文刊名:CUXI
  • 英文刊名:Journal of Ordnance Equipment Engineering
  • 机构:长春理工大学电子信息工程学院;中国人民解放军63850部队;
  • 出版日期:2019-06-25
  • 出版单位:兵器装备工程学报
  • 年:2019
  • 期:v.40;No.251
  • 基金:总装备部装运局科研项目(2013年)
  • 语种:中文;
  • 页:CUXI201906025
  • 页数:6
  • CN:06
  • ISSN:50-1213/TJ
  • 分类号:125-130
摘要
提出了基于改进型果蝇优化算法(DFOA)的解决压力传感器动态补偿方法。通过改变候选解产生机制和引入动态调节步长策略,对果蝇优化算法(FOA)进行了改进。根据压力传感器激波管校准数据寻优得到补偿系统传递函数,对实测冲击波数据进行实验。结果表明,激波管校准数据经补偿后超调量由130%降低到3%,上升时间提升至11μs。经DFOA寻优所得动态补偿系统,有效抑制传感器谐振频率影响,提升传感器动态响应性能。
        A dynamic compensation method based on improved Fruit-fly optimization algorithm( DFOA) to solve the problem of dynamic error was proposed. By changing the candidate solution generation mechanism and introducing the dynamic adjustment step size strategy,the Fruit-fly optimization algorithm( FOA) was improved. According to the calibration data of shock tube of pressure sensor,the transfer function of compensation system was obtained,and the measured shock wave data were tested. The results show that after compensation,the overshoot is reduced from 130% to 3%,the rising time is increased to 11μs. The dynamic compensation system optimized by DFOA can effectively restrain the influence of the resonant frequency of the sensor and improve the dynamic response performance of the sensor.
引文
[1] HASTIE T,TIBSHIRANI R,FRIEDMAN J,et al. The Elements of Statistical Learning[M]. New York:Springer,2009.
    [2]张敏华,胡晓红,王育维.瞬态超高压压阻式传感器技术研究[J].计测技术,2018,38(2):34-37.
    [3] HINICH M J. Detecting a transient signal by bispectral analysis[M]. Springer Berlin Heidelberg,1990,38(7):1277-1283.
    [4]王啸,韩太林,张恩奎.基于烟花算法的压阻式压力传感器动态补偿方法[J].兵工学报,2017,38(11):2226-2233.
    [5]魏娟,张志杰,杨文杰,等.基于改进QR-PSO算法的压力传感器的动态补偿方法[J].传感技术学报,2017,30(4):550-554.
    [6]张霞,张志杰,轩志伟.基于粒子群算法的传感器动态补偿及Labview实现[J].可编程控制器与工厂自动化,2013(5):33-35.
    [7]轩春青,轩志伟,陈保立.基于最小二乘与粒子群算法的压力传感器动态补偿方法[J].传感技术学报,2014,27(10):1364-1367.
    [8]吴小文,李擎.果蝇算法和5种群智能算法的寻优性能研究[J].火力与指挥控制,2013,38(4):17-25.
    [9]毛正阳,方群,李克行,等.应用改进果蝇优化算法的月面巡视器路径规划[J].中国空间科学技术,2014(5):87-93.
    [10]郭晓东,王丽芳,张学良.基于自适应步长的果蝇优化算法[J].中北大学学报(自然科学版),2016,37(6):571-575.
    [11] PAN Wen-Tsao. Using modified fruit fly optimisation algorithm to perform the function test and case studies[J]. Connection Science,2014(25):151-160.
    [12] PAN Q K,SANG H Y,DUAN J H,et al. An improved fruit fly optimization algorithm for continuous function optimization problems[J]. Knowledge-Based Systems,2014,62:69-83.
    [13]田旭,李杰.一种改进的果蝇优化算法及其在气动优化设计中的应用[J].航空学报,2017,38(4):120370.
    [14]付文秀,苏杰.基于果蝇优化算法的水轮发电机组PID参数优化[J].计算机仿真,2015,32(2):383-386.
    [15]王林,吕盛祥,曾宇容.果蝇优化算法研究综述[J].控制与决策,2017,32(7):1153-1162.
    [16] XIA Y L,ZHAI Y. Dynamic compensation and its application of shock wave pressure sensor[J].测试科学与仪器(英文版),2016.
    [17] GONG C,LI Y. Transducer modeling and compensation in high-pressure dynamic calibration[C]//ICMIT 2005:Information Systems and Signal Processing.[S. l.]:[s. n.],2005:60412A-60412A-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700