用户名: 密码: 验证码:
木霉不同施用方式对黄瓜幼苗质量特性及枯萎病防效的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Application Modes of Trichoderma on Seedling Quality Characteristics of Cucumber and Control Effect against Fusarium Wilt
  • 作者:王依纯 ; 廉华 ; 马光恕 ; 李梅 ; 高长敏 ; 台莲梅 ; 曲虹云
  • 英文作者:WANG Yichun;LIAN Hua;MA Guangshu;LI Mei;GAO Changmin;TAI Lianmei;QU Hongyun;College of Agriculture, Heilongjiang Bayi Agricultural University;Institute of Plant Protection, Chinese Academy of Agricultural Sciences;Heilongjiang Academy of Agricultural Sciences Horticulture Branch;
  • 关键词:木霉菌 ; 黄瓜 ; 枯萎病 ; 生理特性 ; 壮苗指标
  • 英文关键词:Trichoderma;;cucumber;;Fusarium wilt;;physiological characteristics;;vigorous seedling index
  • 中文刊名:ZSWF
  • 英文刊名:Chinese Journal of Biological Control
  • 机构:黑龙江八一农垦大学农学院;中国农业科学院植物保护研究所;黑龙江省农业科学院园艺分院;
  • 出版日期:2019-06-10 09:07
  • 出版单位:中国生物防治学报
  • 年:2019
  • 期:v.35
  • 基金:黑龙江省自然科学基金(QC2016035)
  • 语种:中文;
  • 页:ZSWF201903014
  • 页数:10
  • CN:03
  • ISSN:11-5973/S
  • 分类号:112-121
摘要
黄瓜枯萎病是设施黄瓜栽培中最为常见且为害严重的土传真菌病害,应用生防菌防治黄瓜枯萎病,对黄瓜安全生产有重要意义。试验采用前期筛选的对黄瓜枯萎病菌有较好拮抗效果的3株木霉菌,即棘孢木霉Trichoderma asperellum 525、哈茨木霉T. harzianum 610和拟康氏木霉T. pseudokoningii 886,利用盆栽试验,测定了木霉菌不同施用方式对黄瓜幼苗质量及枯萎病防效的影响。3种施用方式分别为T1(木霉与病原菌同时接种)、T2(先接种木霉菌,2d后接种病原菌)和T3(先接种病原菌,2d后接种木霉)。结果显示,3株木霉菌对黄瓜枯萎病的防效均在64.78%以上,且以拟康氏木霉886的T2施用方式的防效最高,达到81.54%。在播种后8~14 d,所有木霉菌处理的黄瓜幼苗壮苗指数、叶绿素含量、根系活力、硝态氮含量、硝酸还原酶活性、根系总吸收面积均比CK1(只接种病原菌孢子悬液)显著上升,3种施用方式中以T2处理对上述6项指标的促进效果最显著,并以拟康氏木霉886在播种后14 d的6项指标增加幅度最大,该处理的黄瓜壮苗指数、叶绿素含量、根系活力、硝态氮含量、硝酸还原酶活性、根系总吸收面积的增加幅度分别达到210.06%、74.39%、37.23%、54.45%、88.00%和51.11%。本研究的3株木霉菌通过提高黄瓜幼苗生理代谢活性,增强了幼苗质量,提高了对黄瓜枯萎病的抗性,在应用中,提前施入木霉菌,有利于提高黄瓜幼苗对病害的防治效果,为后期提高黄瓜产量和品质奠定基础条件。
        Cucumber Fusarium wilt is one of common and serious soil-borne fungal disease in protected cucumber cultivation, and biological control of Cucumber Fusarium wilt is of great significance to the safe production of cucumber. In this study, the effect of application modes of three Trichoderma strains on the seedling quality characteristics and control effects against fusarium wilt of cucumber through pot culture were evaluated. The three Trichoderma strains were Trichoderma asperellum 525, Trichoderma harzianum 610, and Trichoderma pseudokoningii 886 with anti-Fusarium oxysporum activity. The three application modes of the 3 strains were T1(simultaneous inoculation of Trichoderma and pathogen), T2(inoculation of Trichoderma first, and then pathogen 2 days later) and T3(inoculation with pathogen first, and then Trichoderma 2 days later). The results showed that the control efficacies of Trichoderma against Cucumber Fusarium Wilt were all above 64.78%, and the application mode T2 of T. pseudokoningii 886 was the most effective, with control efficacy of 81.54%. Compared with CK1(inoculation with pathogen alone), vigorous seedling index, chlorophyll content, root activity, nitrate nitrogen content, nitrate reductase activity, root total absorbing area of cucumber seedlings significantly improved. Among the three application modes, T2 had the most promoting effect on the above 6 indicators of the cucumber seedlings at 8-14 d after sowing. T. pseudokoningii 886 had significant increased vigorous seedling index, chlorophyll content,root activity, nitrate nitrogen content, nitrate reductase activity, root total absorbing area of cucumber seedlings at 14 days after sowing, by 210.06%, 74.39%, 37.23%, 54.45%, 88.00% and 51.11%, respectively. The results showed that the three Trichoderma strains can improve the physiological metabolic activity and enhance the seedling quality, therefore restrain the incidence of Cucumber Fusarium wilt. Application of Trichoderma preparations in advance will be beneficial to the disease control of cucumber seedlings and lay the foundation for the improvement of the yield and quality of Cucumber in the later period.
引文
[1]沈辰,熊露,韩书庆,等.我国果菜类蔬菜生产与流通形势分析[J].中国蔬菜,2017(9):7-11
    [2]Shen W,Lin X,Zhang H,et al.Land use intensification affects soil microbial populations,functional diversity and related suppressiveness of cucumber Fusarium wilt in China's Yangtze River Delta[J].Plant and Soil,2008,306(2):117-127.
    [3]蒲子婧,张艳菊,刘东,等.黄瓜枯萎病生物防治策略研究进展[J].中国蔬菜,2011,1(6):9-14.
    [4]杨合同.木霉分类与鉴定[M].北京:中国大地出版社,2009
    [5]庄敬华,高增贵,杨长城,等.绿色木霉菌T23对黄瓜枯萎病防治效果及其几种防御酶活性的影响[J].植物病理学报,2005,35(2):179-183
    [6]Segarra G,Casanova E,Avilés M,et al.Trichoderma asperellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron[J].Microbial Ecology,2010,59(159):141-149.
    [7]Gravel V,Antoun H,Tweddell R J.Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride:Possibile role of indole acetic acid(IAA)[J].Soil Biology and Biochemistry,2007,39(8):1968-1977.
    [8]Ainhoa M M,Alguacil M D M,Pascual J A,et al.Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants[J].Journal of Chemical Ecology,2014,40(7):804-815.
    [9]陈臻,古丽君,徐秉良,等.长枝木霉对6种牧草种子发芽与生理效应的影响[J].草地学报,2013,21(3):564-570.
    [10]于威,颉建明,滕汉玮,等.外源谷胱甘肽对自毒作用下嫁接黄瓜及砧穗幼苗叶片抗氧化系统的影响[J].核农学报,2018,32(1):196-207
    [11]刘爽,王宇欣,刘志丹.生物氢烷工程沼渣用于油菜及菠菜育苗的效果[J].农业工程学报,2014,30(11):225-232.
    [12]杨龙元,袁巧霞,刘志刚,等.牛粪堆肥成型基质块蔬菜育苗灌溉方式[J].农业工程学报,2018,34(5):98-106.
    [13]郝建军,康宗利,于洋.植物生理学实验技术[M].北京:化学工业出版社,2007,107-109.
    [14]马光恕,刘明鑫,王萌,等.磷对薄皮甜瓜生理代谢和产量形成影响的研究[J].核农学报,2017,31(5):1014-1021.
    [15]张志良.植物生理学试验指导(2版)[M].北京:高等教育出版社,2002,59-62.
    [16]叶尚红.植物生理生化实验教程(第2版)[M].昆明:云南科技出版社,2007,60-62.
    [17]Bramley H,Turner N C,Turner D W,et al.Roles of morphology,anatomy,and aquaporins in determining contrasting hydraulic behavior of roots[J].Plant Physiology,2009,150(1):348-364.
    [18]张素平.毛壳菌菌肥对黄瓜的生长、品质、产量及防病效果的影响[D].泰安:山东农业大学,2016.
    [19]宗兆锋,康振生.植物病理学原理[M].北京:中国农业出版社,2002.
    [20]Harman G E,Howell C R,Viterbo A,et al.Trichoderma species-opportunistic avirulent plant symbionts[J].Nature reviews microbiology,2004,2(1):43-56.
    [21]Harman G E.Overview of mechanisms and uses of Trichoderma spp.[J].Phytopathology,2006,96(2):190-194.
    [22]贺字典,吴素霞,宋晓飞,等.生防菌与茄病镰刀菌在黄瓜根际动态变化[J].中国生物防治学报,2016,32(3):357-364.
    [23]李晶,杨谦,张淑梅,等.枯草芽孢杆菌B29菌株防治黄瓜枯萎病的田间效果及安全性评价初报[J].中国蔬菜,2009,2(2):30-33.
    [24]Segarra G,Casanova E,Avilés M,et al.Trichoderma asperellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron[J].Microbial Ecology,2010,59(159):141-149.
    [25]Hermosa R,Viterbo A,Chet I,et al.Plant-beneficial effects of Trichoderma and of its genes[J].Microbiology,2012,158:17-25.
    [26]Angela H,Graziella B,Claude D,et al.Plant root growth,architecture and function[J].Plant and Soil,2009,321(1/2):153-187.
    [27]黄红荣,李建明,胡晓辉,等.提高营养液镁浓度可缓解黄瓜幼苗亚低温胁迫[J].植物营养与肥料学报,2017,23(3):740-747.
    [28]刘文海,高东升,束怀瑞.不同光强处理对设施桃树光合及荧光特性的影响[J].中国农业科学,2006,39(10):2069-2075.
    [29]马光恕,刘涛,廉华,等.氮钾配施对麦瓶草(面条菜)品质性状及相关酶活性的影响[J].中国土壤与肥料,2013(4):77-82.
    [30]王永阳.防治苦瓜枯萎病的木霉菌株分离鉴定、定殖检测及其防病促生机理[D].泰安:山东农业大学,2018.
    [31]张敏,胡丽,杨春平,等.木霉L24菌株对小麦幼苗生长的影响[J].安徽农业科学,2010,38(4):1765-1766,1785.
    [32]朱双杰.哈兹木霉对植物的促生作用及其机制研究[D].合肥:安徽农业大学,2007
    [33]翟子鹤,李伟强,傅士杰,等.7种生物菌剂对西瓜枯萎病的防治作用[J].中国蔬菜,2018(5):57-62.
    [34]台莲梅,高俊峰,左豫虎,等.长枝木霉菌T115D诱导大豆叶片防御酶活性及疫病盆栽防治效果[J].中国生物防治学报,2018,34(6):897-905.
    [35]刘明鑫,马光恕,廉华,等.棘孢木霉T437对黄瓜幼苗根系生理特性及立枯病防效的研究[J].现代化农业,2018(6):29-31.
    [36]谢梓语,郭恩辉,孙宇波,等.枯草芽胞杆菌B1409对番茄和辣椒的防病促生作用[J].植物保护学报,2018,45(3):520-527.
    [37]莫贱友,郭堂勋,胡凤云,等.木霉菌株对香蕉枯萎病病原菌抑菌效果测定[J].南方农业学报,2012,43(5):601-604.
    [38]余小兰,邹立飞,邹雨坤,等.甜瓜枯萎病拮抗菌的筛选及鉴定[J].南方农业学报,2018,49(6):1118-1124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700