用户名: 密码: 验证码:
茄子枯萎病菌致病效应因子的预测分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Prediction and Analysis of Pathogenic Effector of Fusarium oxysporum f.sp. melongenae
  • 作者:董章勇 ; 陈欣瑜 ; 舒永馨 ; 罗梅 ; 向梅梅
  • 英文作者:DONG Zhang-yong;CHEN Xin-yu;SHU Yong-xin;LUO Mei;XIANG Mei-mei;Zhongkai University of Agriculture and Engineering;
  • 关键词:茄子枯萎病菌 ; 尖孢镰刀菌 ; 效应因子 ; 全基因组 ; 分析
  • 英文关键词:Fusarium wilt;;Fusarium oxysporum f.sp. melongenae;;Effectors;;Genome;;Analysis
  • 中文刊名:XNYX
  • 英文刊名:Southwest China Journal of Agricultural Sciences
  • 机构:仲恺农业工程学院;
  • 出版日期:2019-06-28
  • 出版单位:西南农业学报
  • 年:2019
  • 期:v.32
  • 基金:国家自然科学基金(31301627);; 广东省自然科学基金(S2012040006912)
  • 语种:中文;
  • 页:XNYX201906013
  • 页数:5
  • CN:06
  • ISSN:51-1213/S
  • 分类号:80-84
摘要
【目的】本研究为了获得由尖孢镰刀菌引起的茄子枯萎病菌的致病相关效应蛋白。【方法】通过生物信息学的方法进行预测分析,包括SignalP、TMHMM、TargetP、ProtComp、与Pathogen-Host Interaction(PHI)数据库进行比对分析等方法。【结果】从茄子枯萎病菌Fomg14004全基因组16 485个蛋白质序列中,经SignalP v4.1分析后得到1601个具有信号肽的蛋白序列;然后经过TMHMM v2.0分析得到1481个跨膜数小于2的蛋白序列;1481个具有信号肽的蛋白经过TargetP v1.1分析得到1449个定位为S的蛋白序列;最后经过ProtComp v9.0分析,得到1376个蛋白质定位于细胞质中的分泌蛋白序列。1376个蛋白中,富含cysteine(大于或等于6)的蛋白序列共733个,其中219个蛋白序列的multiple tandem repeats大于或等于9。将219个蛋白序列和PHI数据库进行比对筛选,并挑取小于300个氨基酸的蛋白序列,共筛选到29个致病相关候选效应因子。【结论】本研究最终从16485个蛋白序列中筛选得到29个候选致病效应因子。为进一步研究该病菌的效应因子致病功能提供基础,也为其他病原菌效应因子的预测分析提供方法参考。
        【Objective】This study screened and predicted the effector proteins of Fusarium oxysporum f.sp. melongenae.【Method】Predictive analysis was carried out by bioinformatics methods, including SignalP, TMHMM, TargetP, ProtComp, and comparison with Pathogen-Host Interaction Database(PHI).【Result】On the basis of the 16 485 protein sequences of the whole genome of eggplant Fusarium wilt Fomg14004, 1601 protein sequences with signal peptides were obtained by SignalP v4.1 analysis, and then 1481 protein sequences, which were smaller than 2, were obtained by TMHMM v 2.0 analysis, and 1481 had signal peptides. The protein sequence was analyzed by TargetP v1.1 analysis by TargetP v1.1 analysis. Finally, the secretory protein sequence of the cytoplasm was obtained by ProtComp v9.0 analysis. The 1376 proteins contained 733 protein sequences of cysteine content greater than or equal to 6, of which 219 protein sequences multiple tandem repeats were greater than or equal to 9. 219 protein sequences and Pathogen-Host Interaction database(PHI) database were compared and screened and the protein sequences of less than 300 amino acids were selected, and 29 candidate effect factors were screened. 【Conclusion】A total of 29 proteins were selected as putative effectors from Fomg14004. Our study will provide useful information for managing Fusarium wilt of eggplant, and insights into the reference for the prediction of other phytopathogens.
引文
[1]李凡海,王桂清.细辛精油和3种化学农药对茄子枯萎病菌的抑制作用[J].农业科技与装备,2014(7):241-245.
    [2]林密.茄子枯萎病防治技术[J].北方园艺,1996(6):24.
    [3]王治林,朱剑花,岳菊,等.茄果类蔬菜枯萎病及其综合防治[J].江苏农业科学,2010(6):168-171.
    [4]许志刚.普通植物病理学[M].北京:高等教育出版社,2009.119-140.
    [5]陈钰辉,刘富中,连勇.蔬菜枯萎病研究进展[J].中国蔬菜,2008(增刊):84-89.
    [6]杨莹莹,刘波,肖荣凤,等.番茄、茄子和辣椒枯萎病原菌分子鉴定及其致病性测定[J].热带作物学报,2012,33(5):906-912.
    [7]高晓敏,王琚钢,马立国,等.尖孢镰刀菌致病机理和化感作用研究进展[J].微生物学通报,2014,41(10):2143-2148.
    [8]Cooper B,Campbell K B,Beard H S,et al.Putative Rust fungal effector proteins in infected bean and soybean leaves[J].Phytopathology,2016,106(5):491-499.
    [9]Selin C,Kievit T R D,Belmonte M F,et al.Elucidating the Role of effectors in plant-Fungal interactions:Progress and Challenges[J].Frontiers in Microbiology,2016,967(7).
    [10]Ramachandran S R,Yin C,Kud J,et al.Effectors from Wheat Rust Fungi Suppress Multiple Plant Defense Responses[J].Phytopathology,2017,107(1):75.
    [11]Tan K C,Oliver R P.Regulation of proteinaceous effector expression in phytopathogenic fungi[J].Plos Pathogens,2017,13(4):e1006241.
    [12]张红生,吴云雨,鲍永美.水稻与稻瘟病菌互作机制研究进展[J].南京农业大学学报,2012,35(5):1-8.
    [13]Jones J D G,Dangl J L.The plant immune system[J].Nature,2006,444(7117):323-329.
    [14]Stergiopoulos I,De Wit P J.Fungal effector proteins[J].Annual Review of Phytopathology,2009,47(1):233-263.
    [15]Petersen T N,Brunak S,Von G H,et al.Signal P 4.0:discriminating signal peptides from transmembrane regions[J].Nature Methods,2011,8(10):785-786.
    [16]Emanuelsson O,Nielsen H S,Von H G,et al.Predicting subcellular localization of proteins based on their N-terminal amino acid sequence[J].Journal of Molecular Biology,2000,300(4):1005-1016.
    [17]Krogh A,Larsson B,Von H G,et al.Predicting transmembrane protein topology with a hidden Markov model:Application to complete genomes[J].Journal of Molecular Biology,2001,305(3):567-580.
    [18]Emanuelsson O,Brunak S,Von G H,et al.Locating proteins in the cell using Target P,Signal P and related tools[J].Nature Protocols,2007,2(4):953-971.
    [19]Emanuelsson O,Brunak S,Von G H,et al.Locating proteins in the cell using Target P,Signal P and related tools[J].Nature Protocols,2007,2(4):953-971.
    [20]闫丽斌,肖淑芹,薛春生.玉米大斑病全基因组候选效应分子的预测和分析[J].沈阳农业大学学报,2017,48(1):15-20.
    [21]曹友志.杨树黑斑病病原_杨生褐盘二孢菌分泌蛋白及效应因子研究[D].南京:南京林业大学,2012.
    [22]李孟琼.抑制植物RNA沉默的稻瘟病菌效应因子的筛选及功能研究[D].临汾:山西师范大学,2015.
    [23]Jones J D,Dangl J L.The plant immune system[J].Nature,2006,444:323-329.
    [24]Stergiopoulos I,De Wit Pjgm.Fungal effector proteins[J].Annual Review of Phytopathology,2009,47(1):233-263.
    [25]Bolton M D,Van Esse H P,Vossen J H,et al.The novel Cladosporium fulvum lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species[J].Molecular Microbiology,2008,69(1):119-136.
    [26]闫丽斌,肖淑芹,薛春生.玉米大斑病菌全基因组候选效应分子的预测和分析[J].沈阳农业大学学报,2017,48(1):15-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700