用户名: 密码: 验证码:
藏北昂吾地区超基性岩的蛇纹石化和磁铁矿化过程及影响因素
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The processes and influencing factors of serpentinization and associated magnetite mineralization of ultramafic rocks from Angwu area,North Tibet
  • 作者:李静超 ; 赵涛 ; 刘治博 ; 林赟 ; 邵华胜 ; 袁国礼 ; 宋扬
  • 英文作者:LI JingChao;ZHAO Tao;LIU ZhiBo;LIN Yun;SHAO HuaSheng;YUAN GuoLi;SONG Yang;School of Earth Sciences and Resources,China University of Geosciences;MNR Key Laboratory of Metallogeny and Mineral Assessment,Institute of Mineral Resources,Chinese Academy of Geological Science;
  • 关键词:蛇纹石化 ; 超基性岩 ; 磁铁矿 ; 班-怒带 ; 藏北
  • 英文关键词:Serpentinization;;Ultramafic rocks;;Magnetite;;Bangong-Nujiang suture zone;;North Tibet
  • 中文刊名:YSXB
  • 英文刊名:Acta Petrologica Sinica
  • 机构:中国地质大学(北京)地球科学与资源学院;中国地质科学院矿产资源研究所自然资源部成矿作用与资源评价重点实验室;
  • 出版日期:2019-07-15
  • 出版单位:岩石学报
  • 年:2019
  • 期:v.35
  • 基金:中国地质调查局项目(DD20160026);; 教育部中央高校基本科研业务费(2652017239)联合资助
  • 语种:中文;
  • 页:YSXB201907013
  • 页数:15
  • CN:07
  • ISSN:11-1922/P
  • 分类号:222-236
摘要
班公湖-怒江缝合带广泛分布超基性岩及蛇纹石化超基性岩,已有研究表明它们与区域成矿关系密切,其蛇纹石化过程使一些元素活化并具有一定的成矿潜力。位于班-怒带中段的昂吾地区蛇纹石化超基性岩主要矿物成分有橄榄石、单斜辉石、铬铁矿、利蛇纹石、磁铁矿和绿泥石等,原岩恢复表明该超基性岩为单辉橄榄岩。镜下鉴定、背散射电子图像、能谱成分分析和电子探针分析结果显示单辉橄榄岩的蛇纹石化及蚀变过程可分为三个阶段:(Ⅰ)以形成相对富铁蛇纹石(Mg#=75~88)为主,基本无磁铁矿析出;(Ⅱ)形成相对富镁的蛇纹石(Mg#> 90),析出磁铁矿;(Ⅲ)蛇纹石进一步蚀变成绿泥石。热力学模拟及多组分矿物相平衡图表明,在蛇纹石化过程中,昂吾地区超基性岩中的辉石脱硅致使反应体系SiO_2活度升高,限制了磁铁矿的生成。同时也发现,在利蛇纹石稳定存在的温度区间内(100~300℃),本研究的蛇纹石化体系温度倾向高值区,不利于磁铁矿的析出。进而探讨了原岩成分、反应体系SiO_2活度及温度等因素对蛇纹石化过程中磁铁矿析出的影响。本研究有助于理解班-怒带内超基性岩的蛇纹石化过程及磁铁矿化机制。
        In Bangong-Nujiang suture zone( BNSZ),ultramafic and serpentinized ultramafic rocks are widely distributed,which was considered being closely associated with the regional mineralization. In the process of serpentinization of ultramafic rocks,some elements were activated and then owned a certain metallogenic potential. Angwu serpentinized ultramafic rocks( AURs),located in the middle section of BNSZ,are mainly composed of olivine,clinopyroxene,chromite,lizardite,magnetite and chlorite. By the method of the restoration,the original rock of AURs was identified as clinopyroxene peridotite. After comprehensively analyzing the results of microscopic photographs,back-scattered electron,energy dispersive spectrometer images and electron probe microanalysis,the alteration process of AURs including serpentinization could be divided into three stages:( Ⅰ) mainly forming The Fe-rich serpentine( Mg#= 75 ~ 88) without magnetite yielding;( Ⅱ) mainly forming the Mg-rich serpentine( Mg#> 90) with magnetite yielding;( Ⅲ)further transforming from serpentine to chlorite. Based on thermodynamic simulation and multi-component mineral phase diagrams,it is proposed that the desilicication from clinopyroxene in AURs increased the activity of SiO_2 in the reaction system of alternation. Thus,the increased SiO_2 activity limited the precipitation of magnetite in the system. Meanwhile, the reaction temperature for the serpentinization of AURs was deduced being at relatively high level in the range of 100 ~ 300℃ under which lizardite could stably crystallized. However,the relative high temperature was also not favorable for magnetite yielding. Furthermore,the influence factors on the magnetite yielding in the serpentinization process of ultramafic rocks were discussed,such as the composition of original rocks,the activity of SiO_2 and temperature in the reaction system of alternation. This study helps us to understand the serpentinization process and the mechanism of magnetite mineralization in the ultramafic rocks in BNSZ.
引文
Ahmed Z and Hall A.1982.Nickeliferous opaque minerals associated with chromite alteration in the Sakhakot-Qila complex,Pakistan,and their compositional variation.Lithos,15(1):39-47
    Awan MA and Sheikh RA.2007.Genesis of nickeliferous ore minerals of the Dargai Complex,Pakistan.Geological Bulletin of the Punjab University,42:69-75
    Beard JS,Frost BR,Fryer P,McC aig A,Searle R,Ildefonse B,Zinin Pand Sharma SK.2009.Onset and progression of serpentinization and magnetite formation in olivine-rich troctolite from IODP hole U1309D.Journal of Petrology,50(3):387-403
    Best MG.1982.Igneous and Metamorphic Petrology.New York:WHFreeman and Company,529-558
    Blakely RJ,Brocher TM and Wells RE.2005.Subduction-zone magnetic anomalies and implications for hydrated forearc mantle.Geology,33(6):445-448
    Cathelineau M and Nieva D.1985.A chlorite solid solution geothermometer the Los Azufres(Mexico)geothermal system.Contributions to Mineralogy and Petrology,91(3):235-244
    Coleman RG.1971.Petrologic and geophysical nature of serpentinites.GSA Bulletin,82(4):897-918
    Connolly JAD.2005.Computation of phase equilibria by linear programming:A tool for geodynamic modeling and its application to subduction zone decarbonation.Earth and Planetary Science Letters,236(1-2):524-541
    Connolly JAD.2009.The geodynamic equation of state:What and how.Geochemistry,Geophysics,Geosystems,10(10):Q10014
    Debret B,Andreani M,Mu1oz M,Bolfan-Casanova N,Carlut J,Nicollet C,Schwartz S and Trcera N.2014.Evolution of Fe redox state in serpentine during subduction.Earth and Planetary Science Letters,400,206-218
    Deschamps F,Godard M,Guillot S and Hattori K.2013.Geochemistry of subduction zone serpentinites:A review.Lithos,178:96-127
    Evans BW.2008.Control of the products of serpentinization by the Fe2+Mg-1exchange potential of olivine and orthopyroxene.Journal of Petrology,49(10):1873-1887
    Fan JJ,Li C,Xie CM,Wang M and Chen JW.2015.Petrology and U-Pb zircon geochronology of bimodal volcanic rocks from the Maierze Group,northern Tibet:Constraints on the timing of closure of the Banggong-Nujiang Ocean.Lithos,227:148-160
    Fang C,Xu B,Hu F,Chen X and Liu YQ.2016.Cu-polymetallic deposit prognosis in the Banggonghu-Nujiang metallogenic belt based on ASTER remote sensing alterration information extraction.Resources Environment&Engineering,30(6):988-993(in Chinese with English abstract)
    Frost BR,Evans KA,Swapp SM,Beard JS and Mothersole FE.2013.The process of serpentinization in dunite from New Caledonia.Lithos,178:24-39
    Fujii M,Okino K,Sato H,Nakamura K,Sato T and Yamazaki T.2016.Variation in magnetic properties of serpentinized peridotites exposed on the Yokoniwa Rise,Central Indian Ridge:Insights into the role of magnetite in serpentinization.Geochemistry,Geophysics,Geosystems,17(12):5024-5035
    Gargiulo MF,Bjerg EA and Mogessie A.2013.Spinel group minerals in metamorphosed ultramafic rocks from Río de Las Tunas belt,Central Andes,Argentina.Geologica Acta,11(2):133-148
    Girardeau J,Marcoux J,Fourcade E,Bassoullet JP and Tang Y.1985.Xainxa ultramafic rocks,central Tibet,China:Tectonic environment and geodynamic significance.Geology,13(5):330-333
    Holland TJB and Powell R.2011.An improved and extended internally consistent thermodynamic dataset for phases of petrological interest,involving a new equation of state for solids.Journal of Metamorphic Geology,29(3):333-383
    Huang RF,Sun WD,Ding X and Wang YR.2013.Mechanism for serpentinization of mafic and ultramafic rocks and the potential of mineralization.Acta Petrologica Sinica,29(12):4336-4348(in Chinese with English abstract)
    Huang RF,Song MS,Ding X,Zhu SY,Zhan WH and Sun WD.2017a.Influence of pyroxene and spinel on the kinetics of peridotite serpentinization.Journal of Geophysical Research:Solid Earth,122(9):7111-7126
    Huang RF,Lin CT,Sun WD,Ding X,Zhan WH and Zhu JH.2017b.The production of iron oxide during peridotite serpentinization:Influence of pyroxene.Geoscience Frontiers,8(6):1311-1321
    Jiang JH,Wang RJ,Qu XM and Xin HB.2009.Provenance nature and basement background of nickel-sulfide-bearing ultrabasic rocks in Bangong Lake island arc zone,Tibet.Mineral Deposits,28(6):793-802(in Chinese with English abstract)
    Kamenetsky VS,Crawford AJ and Meffre S.2001.Factors controlling chemistry of magmatic spinel:An empirical study of associated olivine,Cr-spinel and melt inclusions from primitive rocks.Journal of Petrology,42(4):655-671
    Katayama I,Kurosaki I and Hirauchi KI.2010.Low silica activity for hydrogen generation during serpentinization:An example of natural serpentinites in the Mineoka ophiolite complex,central Japan.Earth and Planetary Science Letters,298(1-2):199-204
    Klein F and Bach W.2009.Fe-Ni-Co-O-S phase relations in peridotiteseawater interactions.Journal of Petrology,50(1):37-59
    Klein F,Bach W and McC ollom TM.2013.Compositional controls on hydrogen generation during serpentinization of ultramafic rocks.Lithos,178:55-69
    Klein F,Bach W,Humphris SE,Kahl WA,J9ns N,Moskowitz B and BerquóTS.2014.Magnetite in seafloor serpentinite-Some like it hot.Geology,42(2):135-138
    Komor SC,Elthon D and Casey JF.1985.Serpentinization of cumulate ultramafic rocks from the north arm mountain massif of the bay of islands ophiolite.Geochimica et Cosmochimica Acta,49(11):2331-2338
    Lafay R,Montes-Hernandez G,Janots E,Chiriac R,Findling N and Toche F.2012.Mineral replacement rate of olivine by chrysotile and brucite under high alkaline conditions.Journal of Crystal Growth,347(1):62-72
    Li GM,Qin KZ,Li JX,Evans NJ,Zhao JX,Cao MJ and Zhang XN.2017.Cretaceous magmatism and metallogeny in the BangongNujiang metallogenic belt,central Tibet:Evidence from petrogeochemistry,zircon U-Pb ages,and Hf-O isotopic compositions.Gondwana Research,41:110-127
    Li XK,Li C and Wang M.2014.The discovery of chromite in the Kangqiong area,middle-western segment of the Bangong Co-Nujiang River suture zone.Geological Bulletin of China,33(11):1815-1819(in Chinese with English abstract)
    Liang X,Wang GH,Yuan GL and Liu Y.2012.Structural sequence and geochronology of the Qomo Ri accretionary complex,Central Qiangtang,Tibet:Implications for the Late Triassic subduction of the Paleo-Tethys Ocean.Gondwana Research,22(2):470-481
    Liu T,Zhai QG,Wang J,Bao PS,Qiangba ZX,Tang SH and Tang Y.2016.Tectonic significance of the Dongqiao ophiolite in the northcentral Tibetan Plateau:Evidence from zircon dating,petrological,geochemical and Sr-Nd-Hf isotopic characterization.Journal of Asian Earth Sciences,116:139-154
    Luo W,Li YG and Peng J.2016.Genesis of the nickel-sulfide-enriched ultrabasic rock in the Bangong Lake area,Tibet.Journal of Mineralogy and Petrology,36(3):29-36(in Chinese with English abstract)
    Maffione M,Morris A,Plümper O and van Hinsbergen DJJ.2014.Magnetic properties of variably serpentinized peridotites and their implication for the evolution of oceanic core complexes.Geochemistry,Geophysics,Geosystems,15(4):923-944
    Majumdar AS,King HE,John T,Kusebauch C and Putnis A.2014.Pseudomorphic replacement of diopside during interaction with(Ni,Mg)Cl2aqueous solutions:Implications for the Ni-enrichment mechanism in talc-and serpentine-type phases.Chemical Geology,380:27-40
    Malvoisin B,Carlut J and Brunet F.2012.Serpentinization of oceanic peridotites:1.A high-sensitivity method to monitor magnetite production in hydrothermal experiments.Journal of Geophysical Research:Solid Earth,117(B1):B01104
    Maulana A,Christy AG and Ellis DJ.2015.Petrology,geochemistry and tectonic significance of serpentinized ultramafic rocks from the South Arm of Sulawesi,Indonesia.Geochemistry,75(1):73-87
    Mével C.2003.Serpentinization of abyssal peridotites at mid-ocean ridges.Comptes Rendus Geoscience,335(10-11):825-852
    Morimoto N.1988.Nomenclature of pyroxenes.Mineralogy and Petrology,39(1):55-76
    Nozaka T,Wintsch RP and Meyer R.2017.Serpentinization of olivine in troctolites and olivine gabbros from the Hess Deep Rift.Lithos,282-283:201-214
    Pitzer KS and Sterner SM.1995.Equations of state valid continuously from zero to extreme pressures with H2O and CO2as examples.International Journal of Thermophysics,16(2):511-518
    Qiu RZ,Zhou S,Deng JF,Li JF,Xiao QH and Cai ZY.2004.Dating of gabbro in the Shemalagou ophiolite in the western segment of the Bangong Co-Nujiang ophiolite belt,Tibet:With a discussion of the age of the Bangong Co-Nujiang ophiolite belt.Geology in China,31(3):262-268(in Chinese with English abstract)
    Ryne A,Jamtveit B,Mathiesen J and Malthe-Srenssen A.2008.Controls on rock weathering rates by reaction-induced hierarchical fracturing.Earth and Planetary Science Letters,275(3-4):364-369
    Rudge JF,Kelemen PB and Spiegelman M.2010.A simple model of reaction-induced cracking applied to serpentinization and carbonation of peridotite.Earth and Planetary Science Letters,291(1-4):215-227
    Seyfried WE Jr,Foustoukos DI and Fu Q.2007.Redox evolution and mass transfer during serpentinization:An experimental and theoretical study at 200℃,500bar with implications for ultramafichosted hydrothermal systems at Mid-Ocean Ridges.Geochimica et Cosmochimica Acta,71(15):3872-3886
    Shi RD,Yang JS,Xu ZQ and Qi XX.2008.The Bangong Lake ophiolite(NW Tibet)and its bearing on the tectonic evolution of the BangongNujiang suture zone.Journal of Asian Earth Sciences,32(5-6):438-457
    Shi RD,Griffin WL,O’Reilly SY,Huang QS,Zhang XR,Liu DL,Zhi XC,Xia QX and Ding L.2012.Melt/mantle mixing produces podiform chromite deposits in ophiolites:Implications of Re-Os systematics in the Dongqiao Neo-tethyan ophiolite,northern Tibet.Gondwana Research,21(1):194-206
    Song Y,Tang JX,Qu XM,Wang DH,Xin HB,Yang C,Lin B and Fan SF.2014.Progress in the study of mineralization in the BangongcoNujiang metallogenic belt and some new recognition.Advances in Earth Science,29(7):795-809(in Chinese with English abstract)
    Sun SS and McD onough WF.1989.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunders AD and Norry MJ(eds.).Magmatism in the Ocean Basins.Geological Society,London,Special Publications,42(1):313-345
    Viti C,Mellini M and Rumori C.2005.Exsolution and hydration of pyroxenes from partially serpentinized harzburgites.Mineralogical Magazine,69(4):491-507
    Wang BD,Wang LQ,Chung SL,Chen JL,Yin FG,Liu H,Li XB and Chen LK.2016.Evolution of the Bangong-Nujiang Tethyan Ocean:Insights from the geochronology and geochemistry of mafic rocks within ophiolites.Lithos,245:18-33
    Wang WL,Aitchison JC,Lo CH and Zeng QG.2008.Geochemistry and geochronology of the amphibolite blocks in ophiolitic mélanges along Bangong-Nujiang suture,central Tibet.Journal of Asian Earth Sciences,33(1-2):122-138
    Xu MJ,Li C,Zhang XZ and Wu YW.2014.Nature and evolution of the Neo-Tethys in central Tibet:Synthesis of ophiolitic petrology,geochemistry,and geochronology.International Geology Review,56(9):1072-1096
    Yao XF,Tang JX,Li ZJ,Deng SL,Ding S,Hu ZH and Zhang Z.2013.The redefinition of the ore-forming porphyry’s age in Gaerqiong skarn-type gold-copper deposit,western Bangong LakeNujiang River metallogenic belt,Xizang(Tibet).Geological Review,59(1):193-200(in Chinese with English abstract)
    Yin A and Harrison TM.2000.Geologic evolution of the HimalayanTibetan orogen.Annual Review of Earth and Planetary Sciences,28:211-280
    Zhang Z,Fang X,Tang JX,Wang Q,Yang C,Wang YY,Ding S and Yang HH.2017.Chronology,geochemical characteristics of the Gaerqin porphyry copper deposit in the Duolong ore concentration area in Tibet and discussion about the identification of the lithoscaps and the possible epithermal deposit.Acta Petrologica Sinica,33(2):476-494(in Chinese with English abstract)
    Zhao YY,Li XS,Liu Y,Wang A and Guo S.2013.Discovery and significance of iron-cobalt-nickel ore with deep source emission type in Cebojiyi district of Xainza,Tibet.Journal of Earth Sciences and Environment,35(3):1-19(in Chinese with English abstract)
    Zhong Y,Xia B,Liu WL,Yin ZX,Hu XC and Huang W.2015.Geochronology,petrogenesis and tectonic implications of the Jurassic Namco-Renco ophiolites,Tibet.International Geology Review,57(4):508-528
    Zhong Y,Liu WL,Xia B,Liu JN,Guan Y,Yin ZX and Huang QT.2017.Geochemistry and geochronology of the Mesozoic Lanong ophiolitic mélange,northern Tibet:Implications for petrogenesis and tectonic evolution.Lithos,292-293:111-131
    Zhong Y,Hu XC,Liu WL,Xia B,Zhang X,Huang W,Fu YB and Wang YG.2018.Age and nature of the Jurassic-Early Cretaceous mafic and ultramafic rocks from the Yilashan area,Bangong-Nujiang suture zone,central Tibet:Implications for petrogenesis and tectonic evolution.International Geology Review,60(10):1244-1266
    方臣,胥兵,胡飞,陈曦,刘烨青.2016.基于ASTER遥感数据蚀变信息提取的西藏班公湖-怒江成矿带铜多金属矿找矿预测.资源环境与工程,30(6):988-993
    黄瑞芳,孙卫东,丁兴,王玉荣.2013.基性和超基性岩蛇纹石化的机理及成矿潜力.岩石学报,29(12):4336-4348
    江军华,王瑞江,曲晓明,辛洪波.2009.西藏班公湖岛弧带含硫化镍超基性岩的源区性质与基底背景.矿床地质,28(6):793-802
    李兴奎,李才,王明.2014.藏北班公湖-怒江缝合带中-西段康穷地区发现铬铁矿.地质通报,33(11):1815-1819
    罗伟,李佑国,彭静.2016.西藏班公湖地区富镍硫化物超基性岩的成因.矿物岩石,36(3):29-36
    邱瑞照,周肃,邓晋福,李金发,肖庆辉,蔡志勇.2004.西藏班公湖-怒江西段舍马拉沟蛇绿岩中辉长岩年龄测定---兼论班公湖-怒江蛇绿岩带形成时代.中国地质,31(3):262-268
    宋扬,唐菊兴,曲晓明,王登红,辛洪波,杨超,林彬,范淑芳.2014.西藏班公湖-怒江成矿带研究进展及一些新认识.地球科学进展,29(7):795-809
    姚晓峰,唐菊兴,李志军,邓世林,丁帅,胡正华,张志.2013.班公湖-怒江带西段尕尔穷矽卡岩型铜金矿含矿母岩成岩时代的重新厘定及其地质意义.地质论评,59(1):193-200
    张志,方向,唐菊兴,王勤,杨超,王艺云,丁帅,杨欢欢.2017.西藏多龙矿集区尕尔勤斑岩铜矿床年代学及地球化学---兼论硅帽的识别与可能的浅成低温热液矿床.岩石学报,33(2):476-494
    赵元艺,李小赛,刘妍,汪傲,郭硕.2013.西藏申扎侧波积异地区深源喷出型铁钴镍矿石的发现及意义.地球科学与环境学报,35(3):1-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700