用户名: 密码: 验证码:
高剪切反应器对乙炔二聚液相催化反应的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of high-speed shear reactor in liquid phase catalytic reaction of acetylene dimerization
  • 作者:张启霞 ; 游延贺 ; 谢建伟 ; 代斌 ; 张金利
  • 英文作者:Zhang Qixia;You Yanhe;Xie Jianwei;Dai Bin;Zhang Jinli;School of Chemistry and Chemical Engineering,Shihezi University;School of Chemical Engineering and Technology,Tianjin University;
  • 关键词:高剪切反应 ; 乙炔二聚 ; 乙烯基乙炔 ; 鼓泡床反应
  • 英文关键词:high-speed shear reactor;;acetylene dimerization;;monovinyl acetylene;;bubble column reactor
  • 中文刊名:SHZN
  • 英文刊名:Journal of Shihezi University(Natural Science)
  • 机构:石河子大学化学化工学院;天津大学化工学院;
  • 出版日期:2019-06-21 20:59
  • 出版单位:石河子大学学报(自然科学版)
  • 年:2019
  • 期:v.37
  • 基金:国家自然科学基金项目(21463021,21776179)
  • 语种:中文;
  • 页:SHZN201901010
  • 页数:6
  • CN:01
  • ISSN:65-1174/N
  • 分类号:73-78
摘要
乙烯基乙炔作为乙炔的下游产品,是生产氯丁橡胶和胶黏剂的重要原料,传统生产方法是由乙炔在纽兰德(Nieuwland)催化剂下发生二聚反应制得,反应器为鼓泡床反应器为主,但由于其气液传质传热效率相对较低,该反应中乙炔单程转化率和乙烯基乙炔的选择性较低。基于此,本文研究将高剪切反应器应用于乙炔二聚气液反应,结果表明:在传统的Nieuwland催化剂和鼓泡床反应器条件下,乙炔的单程转化率为25.5%,乙烯基乙炔的选择性为76.1%;而在高剪切反应器条件下,由于其高剪切速率,使得催化剂溶液和反应气充分接触,乙炔的单程转化率显著提高,达到43.2%,而乙烯基乙炔的选择性相对保持不变。对于配体改性的Nieuwland催化剂,高剪切反应器对乙炔单程转化率的提升幅度小一些,但乙炔单程转化率也分别达到45.7%(L_1-NC)和50.9%(L_2-NC),同样,对乙烯基乙炔的选择性影响不大。
        As a downstream product of acetylene,monovinyl acetylene(MVA) is an important raw material for the production of chloroprene and adhesive.The traditional catalyst for acetylene dimerization is the Nieuwland catalyst,and the reaction is generally performed in a bubble column reactor.However,because of low gas-liquid mass transfer,the drawbacks of this catalytic system include low acetylene conversion rates and low MVA selectivity.In this paper,high-speed shear reactor was implied to gas-liquid acetylene dimerization reaction.The results show that under the conditions of the traditional Nieuwland catalyst and bubble column reactor,the acetylene conversion is 25.5% with 76.1% yield of MVAselectivity.To our delight,under the condition of high shear reactor that the catalyst solution and reaction gas are fully contacted due to its high shear rate,the one-way conversion rate of acetylene is significantly increased to 43.2%,and the selectivity of MVA remains relatively unchanged.For ligand-modified Nieuwland catalyst,the conversation of acetylene increased slightly with the yield of 45.7%(L_1-NC) and 50.9%(L_2-NC),respectively.Similarly,the effect of the MVA selectivity is not obvious.
引文
[1]Ismail H,Leong H C.Curing characteristics and mechanical properties of natural rubber/chloroprene rubber and epoxidized natural rubber/chloroprene rubber blends[J].Polymer Testing,2001,20(5):509-516.
    [2]Szmant H.H.Organic Chemistry[M].Englewood Cliffs,NJ:Prentice-Hall,1957:112.
    [3]Nieuwland J A,Vogt R R.Catalyst and process of employing same:US1926055[P].1933-9-12.
    [4]Nieuwland J A,Calcott W S,Downing F B,et al.Acetylene polymers and their derivatives.I.The controlled polymerization of acetylene[J].Journal of the American Chemical Society,1931,53(11):4197-4202.
    [5]Tachiyama T,Yoshida M,Aoyagi T,et al.Mechanistic study on dimerization of acetylene with a Nieuwland catalyst[J].Applied Organometallic Chemistry,2010,22(4):205-210.
    [6]Tokita Y,Okamoto A,Nishiwaki K,et al.Kinetics of copper(I)-catalyzed dimerization and hydration of acetylene in water[J].Bulletin of the Chemical Society of Japan,2004,77(7):1395-1399.
    [7]Tachiyama T,Yoshida M,Aoyagi T,et al.Deuterium kinetic isotope effects and H/D exchange in dimerization of acetylene with a Nieuwland catalyst in aqueous media[J].Journal of Physical Organic Chemistry,2008,21(6):510-515.
    [8]Nishiwaki K I,Kobayashi M,Takeuchi T,et al.Nieuwland catalysts:investigation of structure in the solid state and in solution and performance in the dimerization of acetylene[J].Journal of Molecular Catalysis A:Chemical,2001,175(1):73-81.
    [9]Liu H,Xie J,Liu P,et al.Effect of Cu+/Cu2+ratio on the catalytic behavior of anhydrous Nieuwland catalyst during dimerization of acetylene[J].Catalysts,2016,6(8):120-131.
    [10]Liu J G,Han M H,Wang Z W.Studies on the catalytic performance of the Nieuwland catalyst and anhydrous catalyst in the dimerization of acetylene to monovinylacetylene[J].Advanced Materials Research,2012(550-553):312-316.
    [11]郑习霞.乙炔二聚中高聚物的成因及控制方法研究[D].重庆:重庆大学,2010:26-43.
    [12]刘作华,余亚玲,杜军,等.La Cl3改性Nieuwland催化剂催化乙炔二聚反应[J].化工学报,2014,65(4):1260-1266.Liu Z H,Yu Y L,Du J,et al.Acetylene dimerization catalyzed by La Cl3-modified Nieuwland catalyst[J].CIESC Journal,2014,65(4):1260-1266.
    [13]Lu J L,Xie J W,Liu H Y,et al.Strontium chloride modified Nieuwland catalyst in the dimerization of acetylene to monovinylacetylene[J].Asian Journal of Chemistry,2014,26(23):8211-8214.
    [14]卢俊龙,刘海月,谢建伟,等.锌(II)-铜(I)双金属协同催化乙炔二聚反应的催化活性研究[J].石河子大学学报(自然科学版),2014,32(2):213-217.Lu J L,Liu H,Xie J,et al.Study on catalytic activity of zinc(II)-copper(I)collaborative bimetallic catalysis in acetylene dimerization reaction[J].Journal of Shihezi University(Natural Science Edition),2014,32(2):213-217.
    [15]You Y,Xie J,Dai B,et al.Effect of iminodiacetic acidmodified Nieuwland catalyst on the acetylene dimerization reaction[J].Catalysts,2017,7(12):394-405.
    [16]You Y,Xie J,Dai B,et al.Effects of coordination ability of nitrogen-containing carboxylic acid ligands on Nieuwland catalyst[J].Catalysts,2018,8(8):337-348.
    [17]卢俊龙,刘海月,谢建伟,等.聚乙二醇/Nieuwland催化剂对乙炔二聚反应的影响[J].化学工程,2015,43(6):60-64.Lu J L,Liu H Y,Xie J W,et al.Effect of polyethylene glycol/Nieuwland catalyst on acetylene dimerization reaction[J].Chemical Engineering,2015,43(6):60-64.
    [18]彭敏.乙炔二聚水体系中催化剂优化研究[D].重庆:重庆大学,2012:32-40.
    [19]刘作华,孙瑞祥,宁伟征,等.斜插穿流式挡板强化鼓泡塔内流体混合的研究[J].化学工程,2013,41(2):51-55.Liu Z H,Sun R X,Ning W Z,et al.Fluid mixing performance of bubble column reactor enhanced by tilted porous bffle[J].Chemical Engineering,2013,41(2):51-55.
    [20]詹锋,黄伟传,朱继明,等.合成乙烯基乙炔的乙炔二聚宏观动力学[J].合成橡胶工业,1993,16(1):16-18.Zhan F,Huang W C,Zhu J M,et al.Kinetics of acetylene dimerization in synthesis of monovinylacetylene[J].Synthetic Rubber Industry,1993,16(1):16-18.
    [21]张一科,贾则琨,甄彬,等.纽兰德催化剂催化乙炔二聚反应过程[J].化工学报,2016,67(1):294-299.Zhang Y K,Jia Z Z,Pei B,et al.Acetylene dimerization catalyzed by Nieuwland catalyst[J].CIESC Journal,2016,67(1):294-299.
    [22]Zhang J,Xu S,Li W.High shear mixers:A review of typical applications and studies on power draw,flow pattern,energy dissipation and transfer properties[J].Chemical Engineering&Processing Process Intensification,2012,57-58(33):25-41.
    [23]秦选文.高剪切混合乳化机在分子筛细化中的应用[J].化工机械,2004,31(4):225-226.Qin X W.Applications of the high shearing mixing emulsors in the fining molecular sieves[J].Chemical Industry,2004,31(4):225-226.
    [24]丁起,张占军,屈功成,等.一种高剪切沥青乳化设备:CN201205492[P].2009-03-11.
    [25]李振,李道光.一种豆制品高剪切、螺旋压滤的加工工艺:CN106879746A[P].2017-06-23.
    [26]刘晓光,吴慧敏,王冲,等.响应曲面法优化高剪切分散乳化提取破布木果多糖[J].石河子大学学报(自然科学版),2017,35(6):680-686.Liu X G,Wu H M,Wang C,et al.Study on high-speed shear treatment for extraction of polysaccharides from cordiadichotoma fruits via response surface optimization[J].Journal of Shihezi University(Natural Science Edition),2017,35(6):680-686.
    [27]赵玉红,林洋,张立钢,等.黑木耳多糖高剪切分散乳化法与酶法提取的比较研究[J].食品与机械,2016,32(4):181-186.Zhao Y H,Lin Y,Zhang L G,et al.Comparison of extraction process of polysaccharide of Auricularia auricular[J].Food and Machinery,2016,32(4):181-186.
    [28]樊梓鸾,林秀芳,王丽,等.响应面法优化高剪切分散乳化提取悬钩子多酚[J].食品与生物技术学报,2014,33(4):355-360.Fan W,Lin X F,Wang L,et al.High-speed shear treatment for extraction of polyphenol from raspberries via response surface optimization[J].Journal of Food Science and Biotechnology,2014,33(4):355-360.
    [29]Alsulays B B,Fayed M H,Alalaiwe A,et al.Mixing of low-dose cohesive drug and overcoming of pre-blending step using a new gentle-wing high-shear mixer granulator[J].Drug Development&Industrial Pharmacy,2018,44(9):1520-1527.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700