用户名: 密码: 验证码:
唐山断裂带南西段和北东段土壤气Rn和CO_2浓度特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Geochemical Characteristics of Soil Gas in the South-west and North-east Segments of the Tangshan Fault Zone, Northern China
  • 作者:杨江 ; 李营 ; 陈志 ; 孙凤霞 ; 赵建明 ; 李静 ; 王江
  • 英文作者:YANG Jiang;LI Ying;CHEN Zhi;SUN Feng-xia;ZHAO Jian-ming;LI Jing;WANG Jiang;CEA Key Laboratory of Earthquake Prediction (Institute of Earthquake Science),CEA;Tangshan Earthquake Station of Earthquake Administration of Hebei Province;Institute of disaster prevention;Monitoring Network Center of Earthquake Administration of Hebei Province;
  • 关键词:唐山断裂带 ; 土壤气 ; Rn和CO_2 ; 地球化学 ; 活动断层
  • 英文关键词:Tangshan fault;;Soil gas;;Rn and CO2;;Geochemistry;;Active fault
  • 中文刊名:DIZN
  • 英文刊名:Earthquake
  • 机构:中国地震局地震预测重点实验室;河北省地震局唐山中心台;防灾科技学院;河北省地震局监测网络中心;
  • 出版日期:2019-07-15
  • 出版单位:地震
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金项目“唐山断裂带逸出气体Rn、 He、 CO2地球化学特征及其成因的实验研究”(41573121);国家自然科学基金项目“北天山泥火山区CH4排放通量及其对大气的贡献率”(41402298);; 中国地震局地震预测研究所基本科研业务专项“首都圈土壤气体地球化学观测研究”(2017IES0303);中国地震局地震预测研究所基本科研业务专项“北天山地区泥火山流体地球化学研究”(2015IES0401)
  • 语种:中文;
  • 页:DIZN201903005
  • 页数:10
  • CN:03
  • ISSN:11-1893/P
  • 分类号:63-72
摘要
本文通过测量唐山断裂带南西段王兰庄和北东段巍峰山的土壤气Rn和CO_2浓度,探讨了Rn和CO_2浓度的空间分布特征及其与断裂活动的关系。测量结果显示,王兰庄剖面和巍峰山剖面土壤气Rn浓度范围分别为691~57 671 Bq/m~3和471~32 739 Bq/m~3, CO_2浓度范围分别为0.17%~7.21%和0.08%~1.71%。两个剖面Rn和CO_2浓度均高于区域背景值,这与唐山断裂带断层的开放状态有关。Rn和CO_2释放强度(K_Q)在王兰庄剖面分别为2.90和4.04,在巍峰山剖面释放强度分别为0.90和0.99。王兰庄剖面测线中部土壤气浓度明显高于两端,而巍峰山剖面测线中部与两端浓度平均值相近,这种浓度空间分布特征的差异主要是断层破碎程度不同所致。巍峰山剖面土壤气Rn浓度水平较高,地球物理学研究发现此区域应力值高,断层活动性较强,表明土壤气Rn浓度与断层活动性有着密切的关系。
        We discussed the geochemical characteristics of soil gas Rn and CO_2 concentration and the correlation between the spatial variation of soil gas and tectonic activity, based on the measurements of Rn and CO_2 concentrations in the south-west(Wanglanzhuang) and north-east(Weifengshan) segments of the Tangshan fault zone. The results show that the concentration range of Rn in Wanglanzhuang and Weifengshan are respectively 691 to 57671 Bq/m~3 and 471 to 32739 Bq/m~3, while the concentration range of CO_2 are respectively 0.17 to 7.21% and 0.08 to 1.71%. The concentrations in these two profiles are higher than the regional background values, which may be caused by the open state of fault in the Tangshan area. The release intensity(K_Q) of soil gas in these two profiles is different. K_Q of Rn and CO_2 is 2.90 and 4.04 respectively in Wanglanzhuang Profile, and is 0.90、0.99 respectively in Weifengshan Profile. This illustrates that the concentration in the middle part of Weifengshan Profile is much higher than that at the both ends, while in Weifengshan Profile, the concentration of each part is consistent. The soil gas geochemical results show that the variations of soil gas spatial distribution may be attributed to the different degree of fault fragmentation in the profiles. The higher the regional stress, the higher the fault activity and the concentrations of Rn in Weifengshan Profile. This indicates that the concentration of Rn is closely related to the activity of faults.
引文
[1] Ciotoli G,Etiope G,Guerra M,et al.The detection of concealed faults in the Ofanto Basin using correlation between soil-gas fracture survey[J].Tectonophysics,1999,301:321-332.
    [2] Chyi L L,Quick T J,Yang F T,et al.Soil gas radon spectra and earthquakes[J].Terrestrial Atmospheric & Oceanic Sciences,2005,16:763-774.
    [3] Fu C C,Yang T F,Walia V,et al.Variations of soil-gas composition around the active Chihshang Fault in a plate suture zone,eastern Taiwan[J].Radiation Measurements,2009,44(9-10):940-944.
    [4] Fu C C,Yang T F,Du J,et al.Variations of helium and radon concentrations in soil gases from an active fault zone in southern Taiwan[J].Radiation Measurements,2008,43:S348-S352.
    [5] Yang T F,Walia V,Chyi L L,et al.Variations of soil radon and thoron concentrations in a fault zone and prospective earthquakes in SW Taiwan[J].Radiation Measurements,2005,40(2-6):496-502.
    [6] Irwin W P,Barnes I.Tectonic relations of carbon dioxide discharges and earthquakes[J].Journal of Geophysical Research Atmospheres,1980,85(85):3115-3121.
    [7] Ioannides K,Papachristodoulou C,Stamoulis K,et al.Soil gas radon:a tool for exploring active fault zones[J].Applied Radiation & Isotopes,2003,59(2-3):205-213.
    [8] Amponsah P,Banoeng-Yakubo B,Andam A,et al.Soil radon concentration along fault systems in parts of south eastern Ghana[J].Journal of African Earth Sciences,2008,51(1):39-48.
    [9] Li Y,Du J,Wang X,et al.Spatial variations of soil gas geochemistry in the Tangshan area of northern China[J].Terrestrial Atmospheric & Oceanic Sciences,2013,24(3):323-332.
    [10] Etiope G,Martinelli G.Migration of carrier and trace gases in the geosphere:an overview[J].Physics of the Earth & Planetary Interiors,2002,129(3):185-204.
    [11] Walia V,Lin S J,Fu C C,et al.Soil gas monitoring:A tool for fault delineation studies along Hsinhua Fault (Tainan),Southern Taiwan[J].Applied Geochemistry,2010,25(4):602-607.
    [12] Toutain J P,Baubron J C.Gas geochemistry and seismotectonics:A review[J].Tectonophysics,1999,304(1):1-27.
    [13] Zarroca M,Linares R,Bach J,et al.Integrated geophysics and soil gas profiles as a tool to characterize active faults:the Amer fault example (Pyrenees,NE Spain)[J].Environmental Earth Sciences,2012,67(3):889-910.
    [14] 江娃利.有关1976年唐山地震发震断层的讨论[J].地震地质,2006,28(2):312-318.
    [15] 陈运泰,林邦慧,王新华,等.用大地测量资料反演的1976年唐山地震的位错模式[J].地球物理学报,1979,22(3):201-217.
    [16] 张之立,李钦祖,谷继承,等.唐山地震的破裂过程及其力学分析[J].地震学报,1980,2(2):3-21.
    [17] 国家地震局《一九七六年唐山地震》编辑组编.一九七六年唐山地震[M].北京:地震出版社,1982,4-103.
    [18] 张祖胜.利用大地测量资料反演地震震源参数的若干问题[J].地震学报,1984,6(2):167-181.
    [19] 刘保金,曲国胜,孙铭心,等.唐山地震区地壳结构和构造:深地震反射剖面结果[J].地震地质,2011,33(4):901-912.
    [20] 虢顺民,李志义,程绍平,等.唐山地震区域构造背景和发震模式的讨论[J].地质科学,1977,12(4):305-321.
    [21] 郭慧,江娃利,谢新生,等.对1976年河北唐山MS7.8地震地表破裂带展布及位移特征的新认识[J].地震地质,2011,33(3):506-524.
    [22] 高原,郑斯华,孙勇.唐山地区地壳裂隙各向异性[J].地震学报,1995(3):283-293.
    [23] 孟庆筱,王太松,吕健,等.唐山断裂带三维构造应力场的数值模拟[J].大地测量与地球动力学,2014,34(1):38-42.
    [24] Wang X,Li Y,Du J,et al.Correlations between radon in soil gas and the activity of seismogenic faults in the Tangshan area,North China[J].Radiation Measurements,2014,60(1):8-14.
    [25] Han X,Li Y,Du J,et al.Rn and CO2 geochemistry of soil gas across the active fault zones in the capital area of China[J].Natural Hazards & Earth System Sciences,2014,2(2):2803-2815.
    [26] 武艳强,黄立人,陈长云,等.1976年唐山MS7.8地震同震及现今形变特征[J].地震学报,2016,38(4):609-617.
    [27] 尤惠川,徐锡伟,吴建平,等.唐山地震深浅构造关系研究[J].地震地质,2002,24(4):571-582.
    [28] 王喜龙,李营,杜建国,等.首都圈地区土壤气Rn,Hg,CO2地球化学特征及其成因[J].地震学报,2017(1):85-101.
    [29] 周晓成,杜建国,王传远,等.西藏拉萨市土壤气中氡、 汞环境地球化学特征[J].环境科学,2007,28(3):659-663.
    [30] 李营,杜建国,王富宽,等.延怀盆地土壤气体地球化学特征[J].地震学报,2009,31(1):82-91.
    [31] 韩晓昆,李营,杜建国,等.夏垫断裂中南段土壤气体地球化学特征[J].物探与化探,2013,37(6):976-982.
    [32] 孙小龙,王广才,邵志刚,等.海原断裂带土壤气与地下水地球化学特征研究[J].地学前缘,2016,23(3):140-150.
    [33] 张宏志,刁桂苓,陈祺福,等.1976年唐7.8级地震震区现今地震震源机制分析[J].地震研究,2008,31(1):1-6.
    [34] 邓起东,张培震,冉勇康,等.中国活动构造与地震活动[J].地学前缘,2003,10(S1):66-73.
    [35] Annunziatellis A,Beaubien S E,Bigi S,et al.Gas migration along fault systems and through the vadose zone in the Latera caldera (central Italy):Implications for CO2 geological storage[J].International Journal of Greenhouse Gas Control,2008,2(3):353-372.
    [36] Faulkner D R,Jackson C A L,Lunn R J,et al.A review of recent developments concerning the structure,mechanics and fluid flow properties of fault zones[J].Journal of Structural Geology,2010,32(11):1557-1575.
    [37] Mahajan S,Walia V,Bajwa B S,et al.Soil gas radon/helium surveys in some neotectonic areas of NW Himalayan foothills,India[J].Natural Hazards and Earth System Sciences,2010,10:1121-1127.
    [38] 张冠亚,周晓成,李营,等.怀安盆地北缘断裂东段土壤气体地球化学特征[J].地震,2015,35(3):113-122.
    [39] Seminsky K Z,Bobrov A A.Radon activity of faults (western Baikal and southern Angara areas)[J].Russian Geology & Geophysics,2009,50(8):682-692.
    [40] 孟广魁,何开明,班铁,等.氡、 汞测量用于断裂活动性和分段的研究[J].中国地震,1997 (1):43-51.
    [41] Singh S,Kumar A,Bajwa B S,et al.Radon monitoring in soil gas and ground water for earthquake prediction studies in North West Himalayas,India[J].Terrestrial Atmospheric & Oceanic Sciences,2008,21(4):685-695.
    [42] Koike K,Yoshinaga T,Ueyama T.Increased radon-222 in soil gas because of cumulative seismicity at active faults[J].Earth,Planets and Space,2014,66(1):1-9.
    [43] Kobeissi M A,Gomez F.Measurement of anomalous radon gas emanation across the Yammouneh fault in southern Lebanon:A possible approach to earthquake prediction[J].International Journal of Disaster Risk Science,2015,6(3):250-266.
    [44] Ghosh D,Deb A,Sengupta R,et al.Comparative study of seismic surveillance on radon in active and non-active tectonic zone of West Bengal,India[J].Radiation Measurements,2011,46(3):365-370.
    [45] Ciotoli G,Bigi S,Tartarello C,et al.S oil gas distribution in the main coseismic surface rupture zone of the 1980,MS=6.9,Irpinia earthquake (southern Italy)[J].Journal of Geophysical Research Solid Earth,2014,119(3):2440-2461.
    *内部资料:《唐山市目标区目标断裂地震地质图及其说明书》

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700