用户名: 密码: 验证码:
洞庭湖湿地洪水期甲烷扩散和气泡排放通量估算及水环境影响分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Estimation of methane diffusion and ebullition flux and water environmental controls during flooding period in Lake Dongting wetlands
  • 作者:任艺洁 ; 邓正苗 ; 谢永宏 ; 朱莲莲 ; 陈晓蓉 ; 张称意 ; 陈心胜 ; 李峰 ; 邹业爱
  • 英文作者:REN Yijie;DENG Zhengmiao;XIE Yonghong;ZHU Lianlian;CHEN Xiaorong;ZHANG Chengyi;CHEN Xinsheng;LI Feng;ZOU Ye'ai;Institute of Subtropical Agriculture,Chinese Academy of Sciences;Dongting Lake Station for Wetland Ecosystem Research,Institute of Subtropical Agriculture,Chinese Academy of Sciences;University of Chinese Academy of Sciences;National Climate Center,China Meteorological Administration;
  • 关键词:甲烷通量 ; 气泡传输 ; 扩散传输 ; 水温 ; 洞庭湖湿地
  • 英文关键词:CH4 flux;;ebullition;;diffusion;;water temperature;;Lake Dongting wetlands
  • 中文刊名:FLKX
  • 英文刊名:Journal of Lake Sciences
  • 机构:中国科学院亚热带农业生态研究所农业生态过程重点实验室;中国科学院亚热带农业生态研究所中国科学院洞庭湖湿地生态系统观测研究站;中国科学院大学;中国气象局国家气候中心;
  • 出版日期:2019-07-06
  • 出版单位:湖泊科学
  • 年:2019
  • 期:v.31
  • 基金:国家自然科学基金项目(41401290);; 中国科学院亚热带农业生态研究所青年创新团队(2017QNCXTD_LF);; 中国气象局东北地区生态气象创新开放实验室课题(STQX201703)联合资助
  • 语种:中文;
  • 页:FLKX201904018
  • 页数:13
  • CN:04
  • ISSN:32-1331/P
  • 分类号:187-199
摘要
水体甲烷(CH_4)主要通过气泡和扩散传输排放到大气,这两种途径在CH_4总排放中的相对贡献及环境影响因子目前关注较少.本文以洞庭湖湿地3种生境类型(光滩、苔草、芦苇)为研究对象,通过静态箱法和扩散模型法估算洪水期CH_4总排放通量、扩散排放通量和气泡排放通量,并分析其水体环境因子影响.结果表明:苔草地CH_4总排放量最高,为6.49±3.12 mg (C)/(m2·h).在3个生境中,CH_4扩散排放占总排放通量的1.34%~3.91%,气泡排放占96.09%~98.66%.扩散排放通量受水体p H、电导率和水温的影响,而CH_4的总排放和气泡排放主要受水温的影响.当水温低于11.7℃时,水体CH_4以扩散排放为主,但当水温高于11.7℃时,水体CH_4主要通过气泡排放.但这一温度阈值是否同样适用于其他类型湿地还需要更多实验验证.本研究对于揭示中低纬度内陆湖泊水体CH_4排放过程有重要意义.
        The main pathways of CH_4 exchange between air and water are molecular diffusion and ebullition. However,the relative contribution of these two pathways to total methane emissions and their environmental controls are far from clear. In this paper,by using float static chamber and diffusion model,we measured the CH_4 total emission flux( Ftotal),diffusion flux( Fdiff) and ebullitive flux( Febul) in three types of habitats( mudflat,Carex meadow and reed land) in Lake Dongting wetlands during flooding period. Further,the environmental controls on CH_4 flux were analyzed through stepwise regression and linear regression model. The results showed that total CH_4 emission flux was the highest in Carex meadow( 6.49±3.12 mg( C)/( m~2·h)) among three habitat types. The CH_4 diffusion fluxes accounts for 1.34% to 3.91% to total CH_4 emissions in the three sites,while the ebullitive flux contributed 96.09% to 98.66% to total CH_4 emissions. The stepwise regression analysis between CH_4 emission and environmental factors showed that CH_4 diffusion flux was affected by water p H,conductivity and water temperature,while the total CH_4 emission flux and CH_4 ebullitive flux were mainly affected by water temperature. Furthermore,we found that water temperature determines the dominant emission pathway: when the water temperature was below 11.7℃,diffusion was the main way for CH_4 emission otherwise ebullition pathway dominant the CH_4 emission. However,whether this temperature threshold is equally applicable to other types of wetlands still requires more experimental verification. This study is important for revealing the mechanism of CH_4 emissions in tropical and subtropical lakes.
引文
[1] International Panel on Climate Change[IPCC]. Climate change:Synthesis report. In:Team CW,Pachauri RK,Meyer LA eds. Contribution of Working GroupsⅠ,ⅡandⅢto the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC,Geneva,Switzerland,2014:151.
    [2] Bloom AA,Palmer PI,Fraser A et al. Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data. Science,2010,327(5963):322-325. DOI:10.1126/science.1175176.
    [3] Winton RS,Flanagan N,Richardson CJ. Neotropical peatland methane emissions along a vegetation and biogeochemical gradient. PLoS One,2017,12(10):e0187019. DOI:10.1371/journal.pone.0187019.
    [4] Lin M,Xu M,Geng YQ et al. Spatial heterogeneity and controlling factors of sutumn CH4flux at water-air interface in Poyang lake of Jiangxi Province,China. Chinese Journal of Ecology,2012,31(8):2112-2118. DOI:10.13292/j.1000-4890.2012.0257.[林茂,徐明,耿玉清等.鄱阳湖秋季水-气界面CH4排放通量的区域差异及影响因素.生态学杂志,2012,31(8):2112-2118.]
    [5] Glaser PH,Chanton JP,Morin P et al. Surface deformations as indicators of deep ebullition fluxes in a large northern peatland. Global Biogeochemical Cycles,2004,18(1). DOI:10.1029/2003GB002069.
    [6] Horn C,Metzler P,Ullrich K et al. Methane storage and ebullition in monimolimnetic waters of polluted mine pit lake Vollert-Sued,Germany. Science of the Total Environment,2017,584/585:1-10. DOI:10.1016/j.scitotenv.2017.01.151.
    [7] Bastviken D,Cole JJ,Pace ML et al. Measurement of methane oxidation in lakes:a comparison of methods. Environmental Science&Technology,2002,36(15):3354-3361. DOI:10.1021/es010311p.
    [8] Mcginnis DF,Kirillin G,Tang KW et al. Enhancing surface methane fluxes from an oligotrophic lake:exploring the microbubble hypothesis. Environmental Science&Technology,2015,49(2):873-880. DOI:10.1021/es503385d.
    [9] Delsontro T,Boutet L,St-Pierre A et al. Methane ebullition and diffusion from northern ponds and lakes regulated by the interaction between temperature and system productivity. Limnology and Oceanography,2016,61(S1):S62-S77. DOI:10.1002/Ino.10335.
    [10] Casper P,Maberly SC,Finlay HBJ. Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere.Biogeochemistry,2000,49(1):1-19. DOI:10.2307/1469408.
    [11] Repo ME,Huttunen JT,Naumov AV et al. Release of CO2and CH4from small wetland lakes in western Siberia. Tellus Series B-Chemical and Physical Meteorology,2007,59(5):788-796. DOI:10.1111/j.1600-0889.2007.00301.x.
    [12] Zhu R,Liu Y,Xu H et al. Carbon dioxide and methane fluxes in the littoral zones of two lakes,east Antarctica. Atmospheric Environment,2010,44(3):304-311. DOI:10.1016/j.atmosenv.2009.10.038.
    [13] Biderre-Petit C,Didier J,Dugat-Bony E et al. Identification of microbial communities involved in the methane cycle of a freshwater meromictic lake. FEMS Microbiology Ecology,2011,77(3):533-545. DOI:10. 1111/j. 1574-6941. 2011.01134.x.
    [14] Yan XC,Zhang CQ,Ji M et al. Concentration of dissolved greenhouse gas and its influence factors in the summer surface water of eutrophic lake. J Lake Sci,2018,30(5):1420-1428. DOI:10.18307/2018.0523.[闫兴成,张重乾,季铭等.富营养化湖泊夏季表层水体温室气体浓度及其影响因素.湖泊科学,2018,30(5):1420-1428.]
    [15] Delsontro T,Mcginnis DF,Sobek S et al. Extreme methane emissions from a swiss hydropower reservoir:contribution from bubbling sediments. Environmental Science&Technology,2010,44(7):2419-2425. DOI:10.1021/es9031369.
    [16] Borrel G,Jézéquel D,Biderre-Petit C et al. Production and consumption of methane in freshwater lake ecosystems. Research in Microbiology,2011,162(9):832-847. DOI:10.1016/j.resmic.2011.06.004.
    [17] Semrau JD,Di Spirito AA,Yoon S. Methanotrophs and copper. FEMS Microbiology Reviews,2010,34(4):496-531.DOI:10.1111/j.1574-6976.2010.00212.x.
    [18] Huang Q,Sun ZD,Jiang JH. Impacts of the operation of the Three Gorges Reservoir on the lake water level of Lake Dongting. J Lake Sci,2011,23(3):424-428. DOI:10.18307/2011.0316.[黄群,孙占东,姜加虎.三峡水库运行对洞庭湖水位影响分析.湖泊科学,2011,23(3):424-428.]
    [19] Li F,Hou ZY,Chen XS et al. Study on composition and floristic of vegetation in Dongting Lake. Research of Agricultural Modernization,2010,31(3):347-351.[李峰,侯志勇,陈心胜等.洞庭湖湿地植被组成及区系成分分析.农业现代化研究,2016,31(3):347-351.]
    [20] Deng Z,Li Y,Xie Y et al. Hydrologic and edaphic controls on soil carbon emission in Dongting Lake Floodplain,China.Journal of Geophysical Research-Biogeosciences,2018,123(9):3088-3097. DOI:10.1029/2018JG004515.
    [21] Zheng XH,Wang R eds. Terrestrial ecosystems-atmosphere:measurement methods for exchange flux of carbon and nitrogen gases. Bejing:China Meteorological Press,2017:58-65.[郑循华,王睿.陆地生态系统-大气:碳氮气体交换通量的地面观测方法.北京:气象出版社,2017:58-65.]
    [22] Wanninkhof R. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical ResearchOceans,1992,97(C5):7373-7382. DOI:10.1029/92JC00188.
    [23] Yan WJ,Wang B,Li XY et al. Summary of studies on environmental chemical process of dissolved N2O in rivers and the exchange flux between water-air interface. Journal of Agro-Environment Science,2008,27(1):15-22.[晏维金,王蓓,李新艳等.河流溶存N2O的环境化学过程及其在水—气界面交换过程的研究.农业环境科学学报,2008,27(1):15-22.]
    [24] Liss PS,Merlivat L. Air-sea gas exchange rates:Introduction and synthesis. Netherlands:Springer,1986:185:113-127.DOI:10.1007/978-94-009-4738-2_5.
    [25] Raymond PA,Cole JJ. Gas exchange in rivers and estuaries:Choosing a gas transfer velocity. Estuaries,2001,24(2):312-317. DOI:10.2307/1352954.
    [26] Amouroux D,Roberts G,Rapsomanikis S et al. Biogenic gas(CH4,N2O,DMS)emission to the atmosphere from nearshore and shelf waters of the north-western black sea. Estuarine Coastal and Shelf Science,2002,54(3):575-587. DOI:10.1006/ecss.2000.0666.
    [27] Zappa CJ. Microbreaking and the enhancement of air-water transfer velocity. Journal of Geophysical Research,2004,109(C8):C08S16. DOI:10.1029/2003jc001897.
    [28] Wang Q,Guan DM,Li MH et al. Distribution and atmospheric fluxes of CO2,CH4and N2O in surface water of Dalian Bay. Marine Environmental Science,2011,30(3):398-403.[王芹,关道明,李明浩等.大连湾表层海水CO2、CH4和N2O的分布及海-气交换通量.海洋环境科学,2011,30(3):398-403.]
    [29] Gao J,Zheng XH,Wang R et al. Preliminary comparisons of the static floating chamber and the diffusion model methods for measuring water-Atmosphere exchanges of methane and nitrous oxide from inland water bodies. Climatic and Environmental Research,2014,19(3):290-302.[高洁,郑循华,王睿等.漂浮通量箱法和扩散模型法测定内陆水体CH4和N2O排放通量的初步比较研究.气候与环境研究,2014,19(3):290-302.]
    [30] Casper P,Albino MF,Adams DD. Diffusive fluxes of CH4and CO2across the water-air interface in the eutrophic Lake Dagow,northeast Germany. SIL Proceedings(1922-2010),2009,30(6):874-877. DOI:10. 1080/03680770.2009.11902261.
    [31] Steger K,Premke K,Gudasz C et al. Comparative study on bacterial carbon sources in lake sediments:the role of methanotrophy. Aquatic Microbial Ecology,2015,76(1):39-47. DOI:10.3354/ame01766.
    [32] Chen X,Ma H,Zheng Y et al. Changes in methane emission and methanogenic and methanotrophic communities in restored wetland with introduction of Alnus trabeculosa. Journal of Soils&Sediments,2016,17(1):1-9. DOI:10.1007/s11368-016-1496-0.
    [33] Kankaala P,Tiina K,Suvi M et al. Methane efflux in relation to plant biomass and sediment characteristics in stands of three common emergent macrophytes in boreal mesoeutrophic lakes. Global Change Biology,2010,11(1):145-153.DOI:10.1111/j.1365-2486.2004.00888.x.
    [34] Sun X,Song C,Guo Y et al. Effect of plants on methane emissions from a temperate marsh in different seasons. Atmospheric Environment,2012,60:277-282. DOI:10.1016/j.atmosenv.2012.06.051.
    [35] Wik M,Crill PM,Varner RK et al. Multiyear measurements of ebullitive methane flux from three subarctic lakes. Journal of Geophysical Research-Biogeosciences,2013,118(3):1307-1321. DOI:10.1002/jgrg.20103.
    [36] Riutta T,Laine J,Aurela M et al. Spatial variation in plant community functions regulates carbon gas dynamics in a boreal fen ecosystem. Tellus Series B-Chemical and Physical Meteorology,2007,59(5):838-852. DOI:10.1111/j.1600-0889.2007.00302.x.
    [37] Martinez D,Anderson MA. Methane production and ebullition in a shallow,artificially aerated,eutrophic temperate lake(Lake Elsinore,CA). Science of the Total Environment,2013,454:457-465. DOI:10.1016/j.scitotenv.2013.03.040.
    [38] Walter KM,Zimov SA,Chanton JP et al. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature,2006,443(7107):71-75. DOI:10.1038/nature05040.
    [39] Rinta P,Bastviken D,Schilder J et al. Higher late summer methane emission from central than northern European lakes.Journal of Limnology,2017,76(1):52-67. DOI:10.4081/jlimnol.2016.1475.
    [40] Michael K. Methane emission by bubbling from Gatun Lake,Panama. Journal of Geophysical Research-Atmospheres,1994,99(D4):8307-8319. DOI:10.1029/92JD02170.
    [41] Palma-Silva C,Marinho CC,Albertoni EF et al. Methane emissions in two small shallow neotropical lakes:The role of temperature and trophic level. Atmospheric Environment,2013,81(12):373-379. DOI:10.1016/j.atmosenv.2013.09.029.
    [42] Rm EI,Nges P,Feldmann T et al. Years are not brothers:two-year comparison of greenhouse gas fluxes in large shallow Lake Vrtsjrv,Estonia. Journal of Hydrology,2014,519:1594-1606. DOI:10.1016/j.jhydrol.2014.09.011.
    [43] Liu L,Xu M,Li R et al. Timescale dependence of environmental controls on methane efflux from Poyang Hu,China. Biogeosciences,2017,14(8):2019-2032. DOI:10.5194/bg-14-2019-2017.
    [44] Xiao S,Yang H,Liu D et al. Gas transfer velocities of methane and carbon dioxide in a subtropical shallow pond. Tellus Series B-chemical and Physical Meteorology,2014,66(1):23795. DOI:10.3402/tellusb.v66.23795.
    [45] Chen H,Zhou S,Wu N et al. Advance in studies on production,oxidation and emission flux of methane from wetlands.Chinese Journal of Applied and Environmental Biology,2006,12(5):726-733.[陈槐,周舜,吴宁等.湿地甲烷的产生、氧化及排放通量研究进展.应用与环境生物学报,2006,12(5):726-733.]
    [46] Yang SS,Chen IC,Ching-Pao L et al. Carbon dioxide and methane emissions from Tanswei River in northern Taiwan. Atmospheric Pollution Research,2015,6(1):52-61. DOI:10.5094/APR.2015.007.
    [47] Schlesinger,William H,Bernhardt ES. Biogeochemistry:an analysis of global change. Quarterly Review of Biology,1997,54(4):353-423. DOI:10.1016/C2012-0-01654-7.
    [48] Zhao J,Zhang GL,Wu Y et al. Distribution and emission of methane from the Changjiang. Environmental Science,2011,32(1):18-25. DOI:10.13227/j.hjkx.2011.01.003.[赵静,张桂玲,吴莹等.长江中溶存甲烷的分布与释放.环境科学,2011,32(1):18-25.]
    [49] Sun Z,Wang L,Tian H et al. Fluxes of nitrous oxide and methane in different coastal Suaeda salsa marshes of the Yellow River estuary,China. Chemosphere,2013,90(2):856-865.
    [50] Wan SA,Xu H,Tong C. Monthly variations of methane emission and soil methane production potential of tidal marshes in the Min River Estuary. Wetland Science,2016,13(4):417-423.[万斯昂,徐辉,仝川.闽江河口潮汐沼泽甲烷排放通量和土壤甲烷产生潜力的月动态.湿地科学,2015,13(4):417-423.]
    [51] Zhang JY,Zhang YY,Tong C et al. Short-term effects of saltwater intrusion and organic carbon loading on CH4and N2O flux from estuarine freshwater marsh ecosystem. Journal of Subtropical Resources and Environment,2016,11(2):39-47.[张璟钰,章吟遥,仝川等.盐水入侵及有机碳输入对河口淡水沼泽CH4、N2O通量影响的短时效应.亚热带资源与环境学报,2016,11(2):39-47.]
    [52] Tang Q,Xue XF,Wang H et al. New knowledge of methanogens and methanotrophs in lake ecosystems. J Lake Sci,2018,30(3):597-610. DOI:10.18307/2018.0302.[唐千,薛校风,王惠等.湖泊生态系统产甲烷与甲烷氧化微生物研究进展.湖泊科学,2018,30(3):597-610.]
    [53] Clough TJ,Bertram JE,Sherlock RR et al. Comparison of measured and EF5-r-derived N2O fluxes from a spring-fed river.Global Change Biology,2006,12(2):352-363. DOI:10.1111/j.1365-2486.2005.01092.x.
    [54] Bastviken D,Cole JJ,Pace ML et al. Fates of methane from different lake habitats:Connecting whole-lake budgets and CH4emissions. Journal of Geophysical Research-Biogeosciences,2008,113(G2):61-74. DOI:10.1029/2007JG000608
    [55] Broecker W,Mix A,Aneree M et al. Radiocarbon measurements on coexisting benthic and planktic foraminifera shells:Potential for reconstructing ocean ventilation times over the past 20000 years. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions with Materials and Atoms,1984,5(2):331-339. DOI:10.1016/0168-583X(84)90538-X.
    [56] Wik M,Varner RK,Anthony KW et al. Climate-sensitive northern lakes and ponds are critical components of methane release. Nature Geoscience,2016,9(2):99-105. DOI:10.1038/NGEO2578.
    [57] Iwata H,Hirata R,Takahashi Y et al. Partitioning eddy-covariance methane fluxes from a shallow lake into diffusive and ebullitive fluxes. Boundary-Layer Meteorology,2018,169(3):413-428. DOI:10.1007/s10546-018-0383-1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700