用户名: 密码: 验证码:
外控电位法浮选分离黄铜矿和辉钼矿
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Flotation separation of chalcopyrite and molybdenite by externally controlled potential method
  • 作者:宋坤 ; 宋永胜 ; 张其东 ; 李文娟 ; 乐观
  • 英文作者:SONG Kun;SONG Yong-sheng;ZHANG Qi-dong;LI Wen-juan;LE Guan;National Engineering Laboratory of Biohydrometallurgy,GRIMAT Engineering Institute Co.,Ltd.;State Key Laboratory of Mineral Processing;
  • 关键词:铜钼分离 ; 外控电位 ; 电偶腐蚀 ; 粒度 ; 电化学
  • 英文关键词:chalcopyrite-molybdenite separation;;externally controlled potential;;galvanic corrosion;;particle size;;electrochemistry
  • 中文刊名:BJKD
  • 英文刊名:Chinese Journal of Engineering
  • 机构:有研工程技术研究院有限公司生物冶金国家工程实验室;矿物加工科学与技术国家重点实验室;
  • 出版日期:2019-07-12 13:43
  • 出版单位:工程科学学报
  • 年:2019
  • 期:v.41;No.303
  • 基金:国家自然科学基金资助项目(51704028);; 矿物加工科学与技术国家重点实验室开放研究基金专项资助项目(BGRIMM--KJSKL-2017--18)
  • 语种:中文;
  • 页:BJKD201907003
  • 页数:7
  • CN:07
  • ISSN:10-1297/TF
  • 分类号:26-32
摘要
利用自制外控电位浮选槽研究了矿物粒度、矿浆p H值、外控电位大小等因素对黄铜矿和辉钼矿浮选行为的影响,从而找到二者分离的条件并进行了铜钼混合精矿的外控电位浮选分离,采用循环伏安测试和腐蚀电偶测试验证了上述试验结论.研究结果表明,-150+31μm的黄铜矿受外控电位影响大,容易被抑制,而辉钼矿则不容易被抑制.-31μm的黄铜矿和辉钼矿可浮性均较差,受外控电位影响较小.外控电位浮选在碱性条件下进行有利于实现抑铜浮钼.在p H值11的条件下,抑铜浮钼的最佳分离外控电位为-1100~-700 m V(vs Ag/Ag Cl).在p H值为11、外控电位-800 m V(vs Ag/Ag Cl)的条件下对多宝山铜钼混合精矿进行浮选分离,经过一次浮选分离可得到钼回收率80. 57%、铜回收率10. 19%的钼粗精矿,辉钼矿和黄铜矿的浮游差达到70. 38%,这使外控还原电位下浮选分离黄铜矿和辉钼矿成为可能.另外,腐蚀电偶测试结果表明:黄铜矿和辉钼矿间的电偶腐蚀对于抑铜浮钼浮选有促进作用.
        Chalcopyrite-molybdenite separation has always been a major difficulty in mineral processing. At present,chemical agents are commonly used to regulate the pulp potential. However,the air flowing into the flotation process easily destroys the reducing atmosphere,resulting in the increase in reagent dosage. Externally controlled potential flotation can reduce the consumption of reagents by adding electrodes to the pulp to control the pulp potential. The effects of mineral size,pulp p H,and externally controlled potentials on the flotation behavior of chalcopyrite and molybdenite were investigated in the present work using a self-made externally controlled potential flotation cell. Under the optimal conditions,the separation test of Cu-Mo concentrate was conducted using the externally controlled potential flotation. The results were verified by cyclic voltammetry and galvanic corrosion tests. The results show that chalcopyrite with-150 + 31 μm fraction is considerably affected by externally controlled potentials and is easily inhibited,whereas molybdenite with-150 + 31 μm fraction is not easily inhibited. Chalcopyrite and molybdenite with-31 μm fraction have poor floatability and are less affected by externally controlled potentials. Externally controlled potential flotation is conducted under alkaline conditions to facilitate the inhibition of chalcopyrite and the flotation of molybdenite. In the case of p H 11,the optimal externally controlled potential for chalcopyrite-molybdenite separation is-1100 to-700 m V( vs Ag/Ag Cl). Under the conditions of p H 11 and externally controlled potential of-800 mV( vs Ag/Ag Cl),the Duobaoshan chalcopyrite-molybdenite mixed concentrate was separated by flotation. After one flotation cycle,the primary molybdenum concentrate with 80. 57% recovery of molybdenum and 10. 19% recovery of copper can be obtained. The flotation difference between molybdenite and chalcopyrite reaches 70. 38%,which makes it possible to separate chalcopyrite and molybdenite by externally controlled reduction potential. In addition,galvanic corrosion between chalcopyrite and molybdenite promoted the flotation of molybdenite and the inhibition of chalcopyrite.
引文
[1] Hu Y,Huang J P. Research progress on flotation technology and flotation reagents for copper--molybdenum ore. Yunnan Metall,2014,43(3):9(胡元,黄建平.铜钼矿的浮选工艺和浮选药剂研究进展.云南冶金,2014,43(3):9)
    [2] Zhang N X,Liu W G,Wei D Z. Research progress of flotation separation and separation depressants of copper-molybdenum mixed concentrate. Met Mine,2018(4):35(张乃旭,刘文刚,魏德洲.铜钼混合精矿浮选分离工艺及分离抑制剂研究进展.金属矿山,2018(4):35)
    [3] Dai Z,Jiang T G,Fang J J,et al. Research progress on flotation separation of copper--molybdenum concentrate mixture. Min Process Equip,2017,45(4):1(代宗,蒋太国,方建军,等.铜钼混合精矿浮选分离的研究进展.矿山机械,2017,45(4):1)
    [4] Hirajima T,Miki H,Suyantara G P W,et al. Selective flotation of chalcopyrite and molybdenite with H2O2oxidation. Miner Eng,2017,100:83
    [5] Guo H,Yen W T. Pulp potential and floatability of chalcopyrite.Miner Eng,2003,16(3):247
    [6] Heyes G W,Trahar W J. The natural floatability of chalcopyrite.Int J Miner Process,1977,4(4):317
    [7] Wang J,Liu Z L,Chen G B,et al. Consumption mechanism of sodium sulfide in flotation separation of copper and molybdenum. J Northeast Univ Nat Sci,2018,39(3):362(王剑,刘子龙,陈国宝,等.铜钼浮选分离中硫化钠的消耗机理.东北大学学报(自然科学版),2018,39(3):362)
    [8] Fu J G,Zhong H,Ou L M. Application of thioglycolic acid in molybdenite-copper sulphide separation. Min Metall Eng,2002,22(4):36(符剑刚,钟宏,欧乐明.巯基乙酸在铜钼分离中的应用.矿冶工程,2002,22(4):36)
    [9] Sun C Y,Wang F L,Shi J Z. Study on electrochemical control flotation of copper ore in erdenut copper mine in Mongolia. Min Metall,2001,10(1):20(孙传尧,王福良,师建忠.蒙古额尔登特铜矿的电化学控制浮选研究与实践.矿冶,2001,10(1):20)
    [10] Jiang Y R,Zhou L H,Xue Y L,et al. Separation of molybdenite from chalcopyrite using new depressant DPS. Min Metall Eng,2001,21(1):33(蒋玉仁,周立辉,薛玉兰,等.新型抑制剂浮选分离黄铜矿和辉钼矿的研究.矿冶工程,2001,21(1):33)
    [11] Ou L M,Feng Q M,Chen J H,et al. A study on new type depressant for chalcopyrite in bulk concentrate of copper and molybdenum. Min Metall Eng,1998,18(1):34(欧乐明,冯其明,陈建华,等.铜钼混合精矿体系中黄铜矿新型抑制剂的研究.矿冶工程,1998,18(1):34)
    [12] Woods R. Electrochemical potential controlling flotation. Int J Miner Process,2003,72(1-4):152
    [13] Salamy S G,Nixon J C. The application of electrochemical methods to flotation research. Inst Min Metall London,1954:503
    [14] Hintikka V V,Leppinen J O. Potential control in the flotation of sulphide minerals and precious metals. Miner Eng,1995,8(10):1151
    [15] Yu J,Yang H Y,Fan Y J. Effect of potential on characteristics of surface film on natural chalcopyrite. Trans Nonferrous Met Soc China,2011,21(8):1880
    [16] Ou L M,Feng Q M,Lu Y P,et al. A study on electrochemistry of depressing chalcopyrite in flotation. Min Metall Eng,1999,19(3):34(欧乐明,冯其明,卢毅屏,等.浮选过程中黄铜矿抑制的电化学研究.矿冶工程,1999,19(3):34)
    [17] Gardner J R,Woods R. An electrochemical investigation of the natural floatability of chalcopyrite. Int J Miner Process,1979,6(1):1
    [18] Qin W Q,Yao G C,Gu G H,et al. Electrochemistry of sulfide minerals and its floatability. Chin J Nonferrous Met,2011,21(10):2669(覃文庆,姚国成,顾帼华,等.硫化矿物的浮选电化学与浮选行为.中国有色金属学报,2011,21(10):2669)
    [19] Ou L M,Feng Q M,Zhang G F,et al. The distribution regularities of cell voltage among the electrodes of extra--potential-controlled floatation equipment. Sci Technol Eng,2005,5(7):435(欧乐明,冯其明,张国范,等.外控电位浮选设备中电极过程的电压分布.科学技术与工程,2005,5(7):435)
    [20] Yu J. Study on Foundation of Copper-Molybdenum Separation from Refroactory Ore and the Novel Extraction Process of Molybdenum[Dissertation]. Shenyang:Northeastern University,2011(俞娟.难选铜钼矿浮选分离基础及钼提取新工艺研究[学位论文].沈阳:东北大学,2011)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700