用户名: 密码: 验证码:
异种金属连接结构的电偶腐蚀周浸试验及有限元仿真
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Alternate Immersion Testing and Finite Element Simulation of Galvanic Corrosion of Dissimilar Metal Connection Structures
  • 作者:何祯 ; 张小明 ; 孟嘉琳 ; 唐蒙
  • 英文作者:HE Zhen;ZHANG Xiao-ming;MENG Jia-lin;TANG Meng;The First Aircraft Institute,AVIC;
  • 关键词:异种金属连接结构 ; 电偶腐蚀 ; 有限元仿真 ; 周浸试验
  • 英文关键词:link structure of dissimilar metals;;galvanic corrosion;;finite element simulation;;alternate immersion test
  • 中文刊名:CLBH
  • 英文刊名:Materials Protection
  • 机构:航空工业第一飞机设计研究院;
  • 出版日期:2019-06-15
  • 出版单位:材料保护
  • 年:2019
  • 期:v.52;No.485
  • 语种:中文;
  • 页:CLBH201906012
  • 页数:7
  • CN:06
  • ISSN:42-1215/TB
  • 分类号:71-77
摘要
为验证有限元腐蚀模拟仿真方法的准确性,查找仿真与试验结果差异的原因,采用周浸试验和COMSOL Multiphysics仿真软件对比研究了航空常用铝合金、合金钢、铜合金和不锈钢等异种金属连接结构的腐蚀发生与发展。以周浸试验测试海洋环境下结构的腐蚀性能,采集腐蚀外观形貌、腐蚀范围、蚀坑深度;通过仿真分析将相同环境条件下材料的极化曲线作为输入,预测腐蚀区域、速率等。研究发现,试验与仿真的腐蚀外观、范围基本一致,试验腐蚀深度略高于仿真结果,说明有限元仿真分析方法有效,但准确性受输入材料极化曲线的测试条件影响。
        In order to verify the validity and reliability of the finite element analysis of galvanic corrosion simulation,and to explore the reason of difference between simulation and experimental data,the occurrence and development of corrosion on the link structure of dissimilar metals including aviation aluminum alloy,alloy steel,copper alloy and stainless steel were studied by alternate immersion test and COMSOL Multiphysics program. Alternate immersion test was employed to evaluate the corrosion performance of different metals in marine environment with collecting the corrosion morphology,corrosion region and depth of corrosion pits. Moreover,the potentiodynamic polarizations of the dissimilar metals structure under the same environment were regarded as the input data of simulation to predict the corrosion area and rate. Results showed that the predicted results agreed well with the laboratory investigations on corrosion appearance and regions,while the depth of corrosion from simulation was slightly shallower than true value. In general,the finite element simulation was effective on corrosion predictions,but the accuracy was influenced by test conditions of polarization curve.
引文
[1] SUZUMURA K,NAKAMURA S I. Environmental Factors Affecting Corrosion of Galvanized Steel Wires[J]. Journal of Materials in Civil Engineering,2004,16(1):1-7.
    [2]刘道新.材料的腐蚀与防护[M].西安:西北工业大学出版社,2005:12.
    [3] SONG G L,ATRENS A,DARGUSCH M. Influence of microstructrue on the corrosion of diecast AZ91D[J]. Corrosion Science,1998,41(2):249-273.
    [4] Van der Ween,ZIMER P,PEREIRA A M,et al. Modeling pitting corrosion by means of a 3D discrete stochastic model[J]. Corrosion Science,2014,82:133-144.
    [5] XIAO J,CHAUDHURI S. Predictive modeling of localized corrosion:an application to aluminum alloys[J]. Electrochimica Acta,2011,56(16):5 630-5 641.
    [6] JIA J X,SONG G,ATRENS A. Evaluation ofthe BEASY program using linear and piecewise linear approaches for the boundary conditions[J]. Material and Corrosion,2004,55(11):845-852.
    [7] DESHPANDE K B. Effect of aluminium spacer on galvanic corrosion between magnesium and mild steel using numerical model and SVET experiments[J]. Corrosion Science,2012,62:184-191.
    [8] TRDAN U,GRUM J. Evaluation of corrosion resistance of AA6082-T651 aluminium alloy after laser shock peening by means of cyclic polarization and El S methods[J]. Corrosion Science,2012,59:324-333.
    [9] FU B,KIRKWOOD M G. Predicting failurepressure of internally corroded pipeline using the finite element method:International conference on offshore mechanics and arctic engineering[C]. Copenhagen:[s.n.],1995:18-22.
    [10] MANDEL M,KRUGER L. Determination of pitting sensitivity of the aluminium alloy EN AW-6060-T6 in a carbonfibre reinforced plastic/aluminium rivet joint by finite element simulation of the galvanic corrosion process[J].Corrosion Science,2013,73:172-180.
    [11] DE MEO D,OTERKUS E. Finite element implementation of a peridynamic pitting corrosion damage model[J]. Ocean Engineering,2017,135:76-83.
    [12] Thébault F,VUILLEMIN B,OLTRA R,et al. Protective mechanisms occurring on zinc coated steel cut-edges in immersion conditions[J]. Electrochimica Acta,2011,56:8 347-8 357.
    [13] Thébault F,VUILLEMIN B,OLTRA R,et al. Reliability of numerical models for simulating galvanic corrosion processes[J]. Electrochimica Acta,2012,82:349-355.
    [14] MURER N,OLTRA R,VUILLEMIN B. Numerical modelling of the galvanic coupling in aluminium alloys:A discussion on the application of local probe techniques[J]. Corrosion Science,2010,52:130-139.
    [15]王蕾,董丽娜.基于COMSOL Multiphysics的杂散电流腐蚀仿真分析[J].新技术新工艺,2014(1):22-24.
    [16]樊玉光,罗文斌. 0Cr18Ni10Ti缝隙腐蚀行为的数值模拟研究[J].化工技术与开发,2017,46(11):51-54.
    [17]陈亚丰.结构设计对镁合金零部件腐蚀性能的研究和仿真[D].上海:上海交通大学,2015:1-47.
    [18]褚林塘,吴有金,孙玉祥.海军飞机机构腐蚀控制设计指南[M].北京:航空工业出版社,2005:16-32.
    [19]陈跃良,黄海亮,张勇,等.不同液膜厚度下电偶腐蚀当量折算研究[J].材料导报,2018,32(5):1 571-1 576.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700