用户名: 密码: 验证码:
Ti6Al4V钛合金渗碳层在HF中的腐蚀行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Corrosion Behavior of Carburized Ti6Al4V Ti-alloy in HF Solution
  • 作者:李坤茂 ; 刘静 ; 张晓燕 ; 李宏 ; 代燕
  • 英文作者:Li Kunmao;LIU Jing;ZHANG Xiaoyan;LI Hong;DAI Yan;College of Materials and Metallurgy,Guizhou University;School of Materials and Architectural Engineering,Guizhou Normal University;
  • 关键词:材料表面与界面 ; 渗碳 ; 感应加热 ; Ti6Al4V ; 组织 ; 腐蚀行为
  • 英文关键词:surface and interface;;carburizing;;induction heating;;Ti6Al4V;;microstructure;;corrosion behavior
  • 中文刊名:CYJB
  • 英文刊名:Chinese Journal of Materials Research
  • 机构:贵州大学材料与冶金学院;贵州师范大学材料与建筑工程学院;
  • 出版日期:2019-07-25
  • 出版单位:材料研究学报
  • 年:2019
  • 期:v.33
  • 基金:国家科学自然基金(51574096,51464008);; 贵州省优秀青年科技人才培养项目([2016]5607号)~~
  • 语种:中文;
  • 页:CYJB201907009
  • 页数:9
  • CN:07
  • ISSN:21-1328/TG
  • 分类号:65-73
摘要
用真空感应渗碳方法对Ti6Al4V钛合金进行高速渗碳,研究了渗碳层在HF溶液中的腐蚀行为。对腐蚀前后渗碳层的相结构和形貌的分析发现:对Ti6Al4V钛合金高速渗碳后,在表面生成一层TiC和CTi_(0.42)V_(1.58)复合化合物相的渗碳层。因为表面有渗碳层,Ti6Al4V钛合金在浓度为0.2%的HF中?泡其腐蚀速率从4.65×10~(-10)g·m~(-2)·h~(-1)降低到3.3×10~(-10) g·m~(-2)·h~(-1)。电化学腐蚀测试结果表明,其自腐蚀电位从未渗碳时的-0.94 V升高到-0.68 V,腐蚀电流密度从4.10 mA·cm~(-2)降至1.65 mA·cm~(-2),极化电阻从6.36Ω·cm~2增大到15.8Ω·cm~2,Rt从0.2Ω·cm~2增大到5.7Ω·cm~2。渗碳层具有n型半导体特性,未渗碳样品具有p型半导体特性。Ti6Al4V钛合金渗碳后,在腐蚀过程中电子转移的阻力增大,使耐蚀性提高。F-对Ti6Al4V钛合金渗碳层的腐蚀机理,主要是析氢腐蚀。
        The rapid carburization of Ti6Al4V titanium alloy was carried out by vacuum induction carburizing method. The corrosion behavior of carburized Ti-alloy in HF solution was investigated. Results show that after rapid carburization a layer of TiC and CTi_(0.42)V_(1.58) composite compound was formed on the surface of T-alloy, and in comparison with the blank Ti-alloy, the corrosion rate in 0.2% HF solution decreases from 4.65×10~(-10) g·m~(-2)·h~(-1) to 3.3×10~(-10) g·m~(-2)·h~(-1) for the carburized Ti-alloy. Correspondingly, the free-corrosion potential increased from-0.94 V to-0.68 V, the corrosion current density decreased from4.10 mA·cm~(-2) to 1.65 mA·cm~(-2), the polarization resistance increases from 6.36 Ω·cm~2 to 15.8 Ω·cm~2 and Rt increases from 0.2 Ω·cm~2 to 5.7 Ω·cm~2. The corrosion product of carburized layer mainly exhibits n-type semiconductor characteristics, and that of the blank Ti-alloy exhibits p-type semiconductor characteristics. The corrosion mechanism of F-on the carburized layer of Ti6Al4V Ti-alloy is mainly hydrogen evolution corrosion.
引文
[1] Riccardo G, Alessandro V, Frencesco D, et al. Dental implants inserted in native bone:Cases series analyses[J]. Dental Research Journal, 2012, 9(Suppl 2):S175
    [2] Wang D L, Xu J W, Yu J D. Application of titanium in prosthodontics[J]. Rare metal materials and engineering, 1993,(3):61(汪大林,徐君伍,于家斗.钛在口腔修复医学中的应用[J].稀有金属材料与工程, 1993,(3):61)
    [3] Reclaru L, Meyer J M. Effects of fluorides on titanium and other dental alloys in dentistry[J]. Biomaterials, 1998, 19(1-3):85
    [4] Nakagawa M, Matsuya S, Udoh K. Corrosion behavior of pure titanium and titanium alloys in fluoride-containing solutions.[J]. Dental Materials Journal, 2001, 20(4):305
    [5] Shim H M, Oh K T, Woo J Y, et al. Corrosion resistance of titanium-silver alloys in an artificial saliva containing fluoride ions[J].2005, 73B(2):252
    [6] Kumar, Satendra, Narayanan S, et al. Influence of fluoride ion on the electrochemical behaviour ofβ-Ti alloy for dental implant application[J]. Corrosion Science, 2010, 52(5):1721
    [7] Wang Z B, Hu H X, Liu C B, et al. The effect of fluoride ions on the corrosion behavior of pure titanium in 0.05 M sulfuric acid[J].Electrochimica Acta, 2014, 135(22):526
    [8] Stancheva M, Bojinov M. Influence of fluoride content on the barrier layer formation and titanium dissolution in ethylene glycol-water electrolytes[J]. Electrochimica Acta, 2012, 78(9):65
    [9] Mabilleau G, Bourdon S, Jolyguillou M L, et al. Influence of fluoride, hydrogen peroxide and lactic acid on the corrosion resistance of commercially pure titanium.[J]. Acta Biomaterialia, 2006, 2(1):121
    [10] Grotberg J, Hamlekhan A, Butt A, et al. Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V[J]. Mater Sci Eng C Mater Biol Appl, 2016, 59:677
    [11] Jamesh M, Kumar S, Narayanan T S N S, et al. Effect of thermal oxidation on the corrosion resistance of Ti6Al4V alloy in hydrochloric and nitric acid medium[J]. Materials&Corrosion, 2014,64(10):902
    [12] Jiang H. Enhancement of titanium alloy corrosion resistance via anodic oxidation treatment[J]. International Journal of Electrochemical Science, 2018, 13(4):3888
    [13] Hee A C, Jamali S S, Bendavid A, et al. Corrosion behaviour and adhesion properties of sputtered tantalum coating on Ti6Al4V substrate[J]. Surface&Coatings Technology, 2016, 307:666
    [14] Rahmati B, Sarhan A A D, Basirun W J, et al. Ceramic tantalum oxide thin film coating to enhance the corrosion and wear characteristics of Ti, 6Al, 4V alloy[J]. Journal of Alloys&Compounds,2016, 676:369
    [15] Baloyi N M, Popoola A P I, Pityana S L. Microstructure, hardness and corrosion properties of laser processed Ti6Al4V-based composites[J]. Transactions of Nonferrous Metals Society of China,2015, 25(09):2912
    [16] Yildiz F, Yetim A F, Alsaran A, et al. Plasma nitriding behavior of Ti6Al4V orthopedic alloy[J]. Surface&Coatings Technology,2008, 202(11):2471
    [17] Liao C J, He Y H, Ming X Z. Effects of Al contents on carburization behavior and corrosion resistance of TiAl alloys[J]. Journal of Materials Engineering&Performance, 2015, 24(10):1
    [18] Bailey R, Sun Y. Corrosion and tribocorrosion performance of pack-carburized commercially pure titanium with limited oxygen diffusion in a 0.9%NaCl solution[J]. Journal of Bio-and TriboCorrosion, 2018, 4(1):6
    [19] Yan Z B, Liu J, Yang F, et al. Rapid induction nitriding strengthening of 20CrMnTi steel[J]. Transactions of Materials and Heat Treatment, 2018, 39(08):129(颜志斌,刘静,杨峰等. 20CrMnTi钢快速感应渗氮强化[J].材料热处理学报, 2018, 39(08):129)
    [20] Feng Z G, Zheng J B, Liu J. Effect of nitriding temperature on wear resistance of vacuum induction nitriding layer of 38CrMoAl steel[J]. Transactions of Materials and Heat Treatment, 2017, 38(10):100(冯治国,郑纪豹,刘静.渗氮温度对38CrMoAl钢真空感应渗氮层耐磨性能的影响[J].材料热处理学报, 2017, 38(10):100)
    [21] Liu J, Zheng J B, Feng Z G, et al.Adouble pulse rapid nitriding device based on induction heating[P]. Chinese patent:CN206680563U,2017-11-28(刘静,郑纪豹,冯志国等.一种基于感应加热的双脉冲快速渗氮装置[P].中国专利:CN206680563U, 2017-11-28)
    [22] Fazel M, Salimijazi H R, Golozar M A, et al. A comparison of corrosion, tribocorrosion and electrochemical impedance properties of pure Ti and Ti6Al4V alloy treated by micro-arc oxidation process[J]. Applied Surface Science, 2015, 324:751
    [23] Schmidt A M, Azambuja D S. Corrosion Behavior of Ti and TI6Al4V in Citrate Buffers Containing Fluoride[J]. Materials Research, 2010, 13(1):45
    [24] Moutarlier V, Gigandet M P, Normand B, et al. EIS characterisation of anodic films formed on 2024 aluminium alloy, in sulphuric acid containing molybdate or permanganate species[J]. Corrosion Science, 2005, 47(4):937
    [25] Liao C, Yang J, He Y, et al. Electrochemical corrosion behavior of the carburized porous TiAl alloy[J]. Journal of Alloys&Compounds, 2015, 619:221
    [26] Jiang Y L, Mu Y S. The ac impedance spectrum of titanium alloy TC4 in 3%NaCl solution after plastic deformation[J], Journal of University of Science and Technology Beijing, 2004,(06):616(姜应律,吴荫顺.钛合金TC4塑性变形后在3%NaCl溶液中的交流阻抗谱[J].北京科技大学学报, 2004,(06):616)
    [27] Qin B, Li S Y, Fan H Q, et al. Semiconductor characteristics and corrosion behavior of anodic oxidation film[J]. Materials Protection, 2011, 44(10):8(钱备,李淑英,范洪强等.钛阳极氧化膜的半导体特性及腐蚀行为[J].材料保护, 2011, 44(10):8)
    [28] Guo H X, Lu B T, Luo J L. Study on passivation and erosion-enhanced corrosion resistance by Mott-Schottky analysis[J]. Electrochimica Acta, 2006, 52(3):1108
    [29] Woldemedhin M T, Raabe D, Hassel A W. Characterization of thin anodic oxides of Ti-Nb alloys by electrochemical impedance spectroscopy[J]. Electrochimica Acta, 2012, 82(21):324
    [30] Li N, Li Y, Wang S, et al. Electrochemical corrosion behavior of nanocrystallized bulk 304 stainless steel[J]. Electrochimica Acta,2007, 52(3):760
    [31] Marsh J, Gorse D. A photoelectrochemical and ac, impedance study of anodic titanium oxide films[J]. Electrochimica Acta,1998, 43(7):659
    [32] Xing Y Z, Jiang C P, Hao J M. Time dependence of microstructure and hardness in plasma carbonized Ti-6Al-4V alloys[J]. Vacuum,2013, 95(9):12
    [33] Cheng L, Liu Z, Yin G. Theoretical research on influences of nonmetal elements on the phase transition temperature of commercial pure titanium[J]. Rare Metal Materials&Engineering, 2008, 37(4):571

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700