用户名: 密码: 验证码:
固体发动机推进剂/绝热层界面Ⅰ型脱粘力学行为试验与仿真研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation and experimental study on mechanical behavior of mode Ⅰ solid propellant/insulation interface debonding
  • 作者:马晓琳 ; 申志彬 ; 崔辉如
  • 英文作者:MA Xiaolin;SHEN Zhibin;CUI Huiru;College of Aerospace Science and Engineering,National University of Defense Technology;
  • 关键词:固体发动机 ; 推进剂/绝热层界面 ; Ⅰ型脱粘 ; PPR内聚力模型
  • 英文关键词:solid rocket motors;;propellant/insulation interface;;mode Ⅰ interface debonding;;PPR cohesive zone model
  • 中文刊名:GTHJ
  • 英文刊名:Journal of Solid Rocket Technology
  • 机构:国防科技大学空天科学学院应用力学系;
  • 出版日期:2018-09-29 09:20
  • 出版单位:固体火箭技术
  • 年:2019
  • 期:v.42;No.192
  • 基金:国防科技大学科研计划资助项目(ZK17-02-06)
  • 语种:中文;
  • 页:GTHJ201903003
  • 页数:8
  • CN:03
  • ISSN:61-1176/V
  • 分类号:18-25
摘要
为了准确描述和预测固体发动机界面的粘接性能,为固体发动机结构完整性分析提供有效参考,通过商业有限元软件ABAQUS用户子程序(UEL)对基于势函数的PPR内聚力单元进行了二次开发,设计了固体发动机推进剂/绝热层界面Ⅰ型脱粘试验方案,并基于试验的反演分析获得PPR内聚力模型对应的特征参数,对不同加载速率下粘接界面的断裂与损伤特性进行了相关研究。研究表明,PPR内聚力模型能够较好地描述界面脱粘过程,且粘接界面的力学行为具有显著的率相关性,随着加载速率的增大,粘接界面的内聚能和内聚强度均增大,法向初始刚度和损伤起始位移均减小。此外,I型界面脱粘试验过程中加载力随位移的变化可分为强化阶段和损伤演化阶段,粘接界面的速率相关性主要体现在损伤演化阶段。
        In order to accurately describe and predict the bonding performance of solid rocket motor( SRM) interface,and to provide effective reference for structural integrity analysis of SRM,this paper developed a PPR potential-based cohesive zone model based on subroutine user element( UEL) in commercial finite element software.The interface debonding test method of solid propellant/insulation has been designed.The PPR cohesive zone model parameters are obtained through the experimental inversion analysis method.The mechanical behavior of the adhesively debonded interface under different loading rates has been studied. The research shows that PPR potential-based model can better describe the interface debonding process.Moreover,the mechanical behavior of the adhesively debonded interface has a significant rate correlation. With the increase of loading rate,the cohesive energy and cohesive strength of the bonding interface increase,whereas the normal initial stiffness and damage initiation displacement decrease.In addition,the variation of loading with displacement can be divided into hardening range and damage evolution range in the process of Mode I interface debonding test.The rate correlation of adhesive interface is mainly presented in the damage evolution range.
引文
[1]姜爱民,李高春,黄卫东.固体火箭发动机粘接界面力学性能的有限元计算及参数分析[J].火炸药学报,2012,35(4):54-57.JIANG Aimin,LI Gaochun,HUANG Weidong.Finite element calculation and parameter analysis on mechanical property of solid rocket motor bondline[J].Journal of Explosives and Propellants,2012,35(4):54-57.
    [2]尹华丽,王清和.界面粘接性能的影响因素[J].固体火箭技术,1998,21(3):40-46.YIN Huali,WANG Qinghe.Influence factors of interface bonding properties[J].Journal of Solid Rocket Technology,1998,21(3):40-46.
    [3]Barenblatt G I.The formation of equilibrium cracks during brittle fracture.General ideas and hypotheses.Axially-symmetric cracks[J].Journal of Applied Matjematics and Mechanics,1959,23(3):622-636.
    [4]Dugdale D S.Yielding of steel sheets containing slits[J].Journal of Mechanics and Physics of Solids,1960,8(2):100-104.
    [5]Park K,Paulino G H,Roesler J R.A unified potential-based cohesive model of mixed-mode fracture[J].Journal of Mechanics and Physics of Solids,2009,57(6):891-908.
    [6]Li Y,Sridharan S.Performance of two distinct cohesive layer models for tracking composite delamination[J].International Journal of Fracture,2005,136(1-4):99-131.
    [7]D 3433-99.Standard test method for fracture strength in cleavage of adhensives in bonded metal joints[S].ASTM,1999.
    [8]Zhou Q C,Ju Y T,Wei Z,et al.Cohesive zone modeling of propellant and insulation interface debonding[J].The Journal of Adhesion,2014,90(3):230-251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700