用户名: 密码: 验证码:
节水灌溉技术下农业种植结构优化模型研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization model of agricultural planting structureunder water-saving irrigation technology
  • 作者:李玥 ; 王春霞 ; 何新林
  • 英文作者:LI Yue;WANG Chun-xia;HE Xin-lin;College of Water and Architectural Engineering, Shihezi University;
  • 关键词:农业种植结构 ; 优化模型 ; 膜下滴灌 ; 经济效益 ; 生态环境状况指数 ; 石河子灌区
  • 英文关键词:agricultural planting structure;;optimization model;;mulched drip irrigation;;economic benefit;;ecological environment condition index;;Shihezi irrigation area
  • 中文刊名:GHDQ
  • 英文刊名:Agricultural Research in the Arid Areas
  • 机构:石河子大学水利建筑工程学院;
  • 出版日期:2019-05-10
  • 出版单位:干旱地区农业研究
  • 年:2019
  • 期:v.37;No.174
  • 基金:国家重点研发计划“西北内陆区保水节水技术集成与应用”(2017YFC0404304);; 石河子大学高层次人才科研启动资金项目(RCZX201129)
  • 语种:中文;
  • 页:GHDQ201903014
  • 页数:6
  • CN:03
  • ISSN:61-1088/S
  • 分类号:110-115
摘要
以往种植结构优化研究通常以经济效益最大为主要适用条件,对生态效益的侧重度较低,不适用于生态环境脆弱的西北地区。基于节水灌溉技术下构建农业种植结构优化模型,以新疆石河子灌区为研究区,以不同灌溉技术比例下经济效益最高为目标,在农业种植总面积、农业种植用水量等常规约束条件中增加了综合生态环境状况指数的计算,并以此评价优化结果的生态效益,建立线性规划模型。结果表明,与现状年相比较,随着膜下滴灌技术应用比例的下降,灌区主要农作物种植总面积有所减少,最低减至2.83×10~4 hm~2;当膜下滴灌技术应用面积占总播种面积的比例为0.84和0.82时,经济效益分别增长了0.05%和降低了0.5%,保证了经济的相对稳定,此时综合生态环境状况指数也较高,分别为22.58和22.94,有利于绿洲灌区生态环境保护与改善;此2种膜下滴灌技术应用比例0.84和0.82条件下,灌区主要作物种植结构优化分别为:膜下滴灌面积小麦1 100.0 hm~2、玉米2 373.3 hm~2、棉花17 286.7 hm~2和桃子728.0 hm~2,其他灌溉技术小麦206.7 hm~2、玉米453.3 hm~2、棉花3 293.3 hm~2和桃子140.0 hm~2;膜下滴灌面积小麦1 073.3 hm~2、玉米2 320.0 hm~2、棉花16 713.3 hm~2和桃子710.7 hm~2,其他灌溉技术小麦233.3 hm~2、玉米506.7 hm~2、棉花3 666.7 hm~2和桃子153.3 hm~2。
        In the past, the research on the optimization of planting structure usually takes the economic benefit as the main applicable condition, and the side severity of ecological benefit is low, which is not suitable for the northwest region with fragile ecological environment. Based on water-saving irrigation technology, an optimization model of agricultural planting structure was constructed. The model took the Shihezi irrigation area in Xinjiang as the research area, with the highest economic benefit under the different irrigation techniques as the target. The comprehensive eco-environmental condition index was added to the conventional constraints such as total agricultural planting area and water consumption for agricultural planting, and the ecological benefits of the optimized results were evaluated, and a linear programming model was established. The results showed that, with the decrease of the proportion of drip irrigation under mulch, the total area of agricultural planting decreased to 28,300 hm~2 compared with the current year. When the proportion of application area of drip irrigation under mulch to total sowing area was 0.84 and 0.82, the economic benefit increased by 0.05% and decreased by 0.5%, respectively, which ensured the relative stability of economy. The comprehensive ecological environment index was 22.58 and 22.94, respectively, which was beneficial to the protection and improvement of ecological environment in oasis irrigation area. Under the application ratio of these two drip irrigation techniques, the main crop planting structure in irrigation area was optimized as follows:(1)Wheat 1 100.0 hm~2, maize 2 373.3 hm~2, cotton 17 286.7 hm~2 and peach 728.0 hm~2 under mulch drip irrigation; wheat 206.7 hm~2, maize 453.3 hm~2, cotton 3 293.3 hm~2 and peach 140.0 hm~2 under other irrigation techniques.(2)Wheat 1 073.3 hm~2, maize 2 320.0 hm~2, cotton 16 713.3 hm~2 and peach 710.7 hm~2 under mulch drip irrgation; wheat 233.3 hm~2, maize 506.7 hm~2, cotton 3 666.7 hm~2 and peach 153.3 hm~2 under other irrigation techniques.
引文
[1] 李茉,郭萍.基于双层分式规划的种植结构多目标模型研究[J].农业机械学报,2014,45(9):168-174,130.
    [2] Joeres E F,Liebman J C,Revelle C S.Operating rules for joint operation of raw water sources[J].Water Resources Research,1971,7(2):225-235.
    [3] Dudley N J,Howell D T,Musgrave W F.Optimal intraseasonal irrigation water allocation [J].Water Resources Research,1971,7(4):770-788.
    [4] Smith.D V.A hybrid model for irrigation planning using chance constrained programming and hydrologic simulation[J].International Journal of Systems Science,1973,4(4):533-544.
    [5] Meredith D D.Design and planning of engineering systems[J].Molecules,1973,9(8):705-712.
    [6] Afzal J,Noble D H,Weather head E K.Optimization model for alternative use of different quality irrigation waters [J].Journal of Irrigation & Drainage Engineering,1992,118(118):218-228.
    [7] 刘潇,郭萍.基于不确定性的旱作作物种植结构优化[J].干旱地区农业研究,2013,31(6):208-213.
    [8] 胡洪静,吴鑫淼,齐成伟,等.节水压采区农业种植结构多目标优化研究——以衡水市为例[J].灌溉排水学报,2017,36(10):95-99.
    [9] 李建芳,粟晓玲.基于虚拟水细分的多目标种植结构优化模型[J].灌溉排水学报,2013,32(5):126-129.
    [10] 周惠成,彭慧,张弛,等.基于水资源合理利用的多目标农作物种植结构调整与评价[J].农业工程学报,2007,23(9):45-49.
    [11] 张帆,郭萍,李茉.基于双区间两阶段随机规划的黑河中游主要农作物种植结构优化[J].中国农业大学学报,2016,21(11):109-116.
    [12] 张帆,郭萍,任冲锋.分式两阶段随机优化模型在作物种植结构优化中的应用[J].中国农村水利水电,2016,(9):111-114.
    [13] 陈敏,李永平,王光谦,等.考虑水足迹的区域作物种植结构分式规划模型研究[J].水力发电学报,2017,36(3):22-30.
    [14] 梁美社,王正中.基于虚拟水战略的农业种植结构优化模型[J].农业工程学报,2010,26(S1):130-133.
    [15] 彭致功,张宝忠,刘钰,等.基于灌溉制度优化和种植结构调整的用水总量控制[J].农业工程学报,2018,34(3):103-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700