用户名: 密码: 验证码:
有限元分析在脊柱侧凸生物力学研究中的应用及进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application and progress of finite element analysis in scoliosis biomechanical research
  • 作者:孙枫原 ; 李宗远 ; 何希 ; 杨宗德
  • 英文作者:Sun Fengyuan;Li Zongyuan;He Xi;Yang Zongde;College of Basic Medical Sciences, Naval Medical University;Department of Spinal Surgery, Changhai Hospital, Naval Medical University;
  • 关键词:脊柱侧凸 ; 有限元分析 ; 生物力学 ; 数字化骨科 ; 精细结构 ; 模拟 ; 病因学
  • 英文关键词:scoliosis;;finite element analysis;;biomechanics;;digital orthopedics;;fine structure;;simulation;;etiology
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:解放军海军军医大学基础医学院;解放军海军军医大学长海医院脊柱外科;
  • 出版日期:2019-08-07
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.889
  • 语种:中文;
  • 页:XDKF201932024
  • 页数:6
  • CN:32
  • ISSN:21-1581/R
  • 分类号:143-148
摘要
背景:随着计算机技术的进步,有限元分析法在脊柱侧凸生物力学研究中的应用逐渐增多。目的:回顾三维有限元分析法在脊柱侧凸生物力学研究中的应用与进展,总结其发展历程与特点,展望其发展前景与方向,以期为脊柱侧凸生物力学研究发挥指导作用。方法:由第一作者应用计算机检索PubMed数据库、Web of science数据库、万方数据库中1998至2019年出版的文献,英文检索词为"FEA,finite element analysis,3D FEA,scoliosis,adolescent idiopathic scoliosis,AIS";中文检索词为"有限元分析,三维有限元分析,脊柱侧凸,特发性脊柱侧凸,青少年特发性脊柱侧凸"。排除研究质量较差的文献及重复性研究,最终纳入48篇文献进行综述。结果与结论:(1)文献复习发现三维有限元分析在脊柱侧凸生物力学的研究中已有大量实践,取得了重要的进展;(2)在模拟外固定设备、优化手术方案、预估预后效果等方面应用较多,在病因学方面的研究较少;(3)三维有限元分析法的发展方向在于进一步提高模型的精细结构模拟,优化对非线性元件的生物力学特性的模拟,完善脊柱生长和代偿影响的模拟,以建立更能反映真实情况的三维有限元模型,提高有限元分析的可靠性。
        BACKGROUND: Finite element analysis has been used commonly in the biomechanics research of scoliosis due to the process of computing technology. OBJECTIVE: To review the application and progress of three-dimensional finite element analysis applied in the study of biomechanics of scoliosis, and to summarize its development process and characteristics, and look forward to its development prospects and directions in order to play a guiding role in the biomechanical study of scoliosis. METHODS: The first author retrieved the PubMed, Web of Science, and Wanfang Database with the computer for studies published from 1998 to 2019. The key words were FEA, finite element analysis, 3D FEA, scoliosis, adolescent idiopathic scoliosis, AIS. Studies with poor quality and repetitive studies were excluded, and 48 articles were finally included for review. RESULTS AND CONCLUSION:(1) Literature review found that three-dimensional finite element analysis has a lot of practice in the study of scoliosis biomechanics, and important progress has been made.(2) It has been widely used in simulating external fixator, optimizing surgical procedure and predicting prognosis, but less in etiology.(3) The development direction of three-dimensional finite element analysis is to further improve the fine structure simulation of the model, optimize the simulation of the biomechanical characteristics of non-linear elements, improve the simulation of spinal growth and compensatory effects, so as to establish a more realistic three-dimensional finite element model and improve the reliability of finite element analysis.
引文
[1]黄盛佳,霍洪军,杨学军,等.PUMCⅡd1型青少年特发性脊柱侧凸三维有限元模型的建立[J].中国组织工程研究,2014,18(26):4219-4223.
    [2]黄盛佳,霍洪军,杨学军,等.PUMCⅡd1型青少年特发性脊柱侧凸后路三维矫形手术有限元研究[J].国际骨科学杂志,2016,37(1):46-52.
    [3]李晔.王以朋.贾少薇.等.三维有限元法分析先天性脊柱侧凸冠状面腰骶段的柔韧性[J].中国组织工程研究,2017,21(27):4366-4372.
    [4]Salmingo R,Tadano S,Fujisaki K,et al.Corrective force analysis for scoliosis from implant rod deformation.Clin Biomech(Bristol,Avon).2012;27(6):545-550.
    [5]Little JP,Izatt MT,Labrom RD,et al.An FE investigation simulating intra-operative corrective forces applied to correct scoliosis deformity.Scoliosis.2013;8(1):9.
    [6]Lafon Y,Steib JP,Skalli W.Intraoperative three dimensional correction during in situ contouring surgery by using a numerical model.Spine(Phila Pa 1976).2010;35(4):453-459.
    [7]Gardner-Morse M,Stokes IA.Three-dimensional simulations of the scoliosis derotation maneuver with Cotrel-Dubousset instrumentation.J Biomech.1994;27(2):177-181.
    [8]盛林,汪学松,吴志宏,等,不同矫形力矫正特发性脊柱侧凸的三维有限元分析[J].中国组织工程研究与临床康复,2009,13(30):5972-5976.
    [9]Liao YC,Feng CK,Tsai MW,et al.Shape modification of the Boston brace using a finite-element method with topology optimization.Spine(Phila Pa 1976).2007;32(26):3014-3019.
    [10]Kessler JI.Efficacy of a new computer-aided design/computer-aided manufacture orthosis in the treatment of adolescent idiopathic scoliosis.J Pediatr Orthop.2008;17(4):207.
    [11]刘伟强,张振军,孙艺萄,等.有限元法在腰椎融合术与置换术生物力学研究中应用进展[J].医用生物力学,2018,33(1)):82-88.
    [12]Viviani GR,Ghista DN,Lozada PJ,et al.Biomechanical analysis and simulation of scoliosis surgical correction.Clin Orthop Relat Res.1986;(208):40-47.
    [13]Gignac D,Aubin CE,Dansereau J,et al.Optimization method for 3Dbracing correction of scoliosis using a finite element model.Eur Spine J.2000;9(3):185-190.
    [14]Perie D,Aubin CE,Petit Y,et al.Personalized biomechanical simulations of orthotic treatment in idiopathic scoliosis.Clin Biomech(Bristol,Avon).2004;19(2):190-195.
    [15]Zhang H,Hu X,Wang Y,et al.Use of finite element analysis of a Lenke type 5 adolescent idiopathic scoliosis case to assess possible surgical outcomes.Comput Aided Surg.2013;18(3-4):84-92.
    [16]Sattout A,Clin J,Cobetto N,et al.Biomechanical assessment of providence nighttime brace for the treatment of adolescent idiopathic scoliosis.Spine Deform.2016;4(4):253-260.
    [17]Aubin C,Clin J,Rawlinson J.Biomechanical simulations of costo-vertebral and anterior vertebral body tethers for the fusionless treatment of pediatric scoliosis.J Orthop Res.2018;36(1):254-264.
    [18]Agarwal A,Jayaswal A,Goel VK,et al.Patient-specific distraction regimen to avoid growth-rod failure.Spine.2017;43(4):E221-E226.
    [19]Weiss H,Kleban A.Development of CAD/CAM based brace models for the treatment of patients with scoliosis-classification based approach versus finite element modelling.Asian Spine J.2015;9(5):661.
    [20]Cobetto N,Aubin Cé,Parent S,et al.3D correction of AIS in braces designed using CAD/CAM and FEM:a randomized controlled trial.Scoliosis Spinal Disord.2017;12(1):24.
    [21]Hachem B,Aubin C,Parent S.Porcine spine finite element model:a complementary tool to experimental scoliosis fusionless instrumentation.Eur Spine J.2017;26(6):1610-1617.
    [22]Agarwal A,Agarwal AK,Jayaswal A,et al.Smaller interval distractions may reduce chances of growth rod breakage without impeding desired spinal growth:a finite element study.Spine Deform.2014;2(6):430-436.
    [23]Galbusera F,Bassani T,La Barbera L,et al.Planning the surgical correction of spinal deformities:toward the identification of the biomechanical principles by means of numerical simulation.Front Bioeng Biotechnol.2015;3:178.
    [24]海涌,潘爱星,李永刚,等.早发性脊柱侧凸不同生长棒固定方式对邻近节段生物力学的影响[J].中华医学杂志,2017,97(48):3768-3773.
    [25]李明,范建平,赵检等.不同材料矫形棒在青少年特发性脊柱侧凸矢状面重建中作用的有限元研究[J].脊柱外科杂志,2018,16(6):358-362.
    [26]Yang Z,Xie Y,Li M.Three-dimensional spring model:A new hypothesis of pathogenesis of adolescent idiopathic scoliosis.Med Hypotheses.2009;73(5):709-713.
    [27]Azegami H,Murachi S,Kitoh J,et al.Etiology of idiopathic scoliosis.Computational study.Clin Orthop Relat Res,1998;(357):229-236.
    [28]Villemure I,Aubin CE,Dansereau J,et al.Simulation of progressive deformities in adolescent idiopathic scoliosis using a biomechanical model integrating vertebral growth modulation.J Biomech Eng.2002;124(6):784-790.
    [29]Shi L,Wang D,Driscoll M,et al.Biomechanical analysis and modeling of different vertebral growth patterns in adolescent idiopathic scoliosis and healthy subjects.Scoliosis.2011;6:11.
    [30]Goto M,Kawakami N,Azegami H,et al.Buckling and bone modeling as factors in the development of idiopathic scoliosis.Spine(Phila Pa1976).2003;28(4):364-370;discussion 371.
    [31]Wang L,Zhang B,Chen S,et al.A validated finite element analysis of facet joint stress in degenerative lumbar scoliosis.World Neurosurgery.2016;95:126-133.
    [32]贾少薇,张顺心,范顺成,等.脊柱侧凸腰骶椎结构的有限元分析及其变形趋势[J].医用生物力学,2017,32(3):235-241.
    [33]Li QY,Zhong GB,Liu ZD,et al.Effect of asymmetric tension on biomechanics and metabolism of vertebral epiphyseal plate in a rodent model of scoliosis.Orthop Surg.2017;9(3):311-318.
    [34]Wang Z,Chen H,Yu YE,et al.Unique local bone tissue characteristics in iliac crest bone biopsy from adolescent idiopathic scoliosis with severe spinal deformity.Sci Rep.2017;7(1):40265.
    [35]Song XX,Jin LY,Li XF,et al.Effects of low bone mineral status on biomechanical characteristics in idiopathic scoliotic spinal deformity.World Neurosurg.2018;110:e321-e329.
    [36]Schlager B,Niemeyer F,Galbusera F,et al.Asymmetrical intrapleural pressure distribution:a cause for scoliosis?A computational analysis.Eur J Appl Physiol.2018.
    [37]Pasha S,Aubin CE,Labelle H,et al.The biomechanical effects of spinal fusion on the sacral loading in adolescent idiopathic scoliosis.Clin Biomech.2015;30(9):981-987.
    [38]Henao J,Aubin CE,Labelle H,et al.Patient-specific finite element model of the spine and spinal cord to assess the neurological impact of scoliosis correction:preliminary application on two cases with and without intraoperative neurological complications.Comput Methods Biomech Biomed Engin.2015;19(8):901-910.
    [39]Xu M,Yang J,Lieberman I,et al.Finite element method-based study for effect of adult degenerative scoliosis on the spinal vibration characteristics.Comput Biol Med.2017;84:53-58.
    [40]Agarwal A,Agarwal AK,Jayaswal A,et al.Outcomes of optimal distraction forces and frequencies in growth rod surgery for different types of scoliotic curves:an in silico and in vitro study.Spine Deform.2017;5(1):18-26.
    [41]Henao J,Labelle H,Arnoux PJ,et al.Biomechanical simulation of stresses and strains exerted on the spinal cord and nerves during scoliosis correction maneuvers.Spine Deform.2018;6(1):12-19.
    [42]Pea R,Dansereau J,Caouette C,et al.Computer-assisted design and finite element simulation of braces for the treatment of adolescent idiopathic scoliosis using a coronal plane radiograph and surface topography.Clin Biomech.2018;54:86-91.
    [43]Hadagali P,Peters JR,Balasubramanian S.Morphing the feature-based multi-blocks of normative/healthy vertebral geometries to scoliosis vertebral geometries:development of personalized finite element models.Comput Methods Biomech Biomed Engin.2018;21(4):297-324.
    [44]Vergari C,Courtois I,Ebermeyer E,et al.Experimental validation of a patient-specific model of orthotic action in adolescent idiopathic scoliosis.Eur Spine J.2016;25(10):3049-3055.
    [45]Xu M,Yang J,Lieberman IH,et al.Lumbar spine finite element model for healthy subjects:development and validation.Comput Methods Biomech Biomed Engin.2017;20(1):1-15.
    [46]Little JP,Adam CJ.The effect of soft tissue properties on spinal flexibility in scoliosis:biomechanical simulation of fulcrum bending.Spine(Phila Pa 1976).2009;34(2):E76-82.
    [47]Cego?ino J,Calvo-Echenique A,Pérez-del Palomar A.Influence of different fusion techniques in lumbar spine over the adjacent segments:A 3D finite element study.J Orthop Res.2015;33(7):993-1000.
    [48]Wang H,Wang X,Chen W,et al.Biomechanical comparison of interspinous distraction device and facet screw fixation system on the motion of lumbar spine:a finite element analysis.Chin Med J(Engl).2014;127(11):2078-2084.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700