用户名: 密码: 验证码:
水合物直井与水平井产气效果分析——以神狐海域SH2站位为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis on gas hydrate exploitation response between the horizontal and vertical wells at SH2 site in the Shenhu area of the South China Sea
  • 作者:申志聪 ; 王栋 ; 贾永刚
  • 英文作者:SHEN Zhicong;WANG Dong;JIA Yonggang;College of Environmental Science and Engineering,Ocean University of China;Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering;Marine Geology and Environment Laboratory,Qingdao National Laboratory for Marine Science and Technology;
  • 关键词:天然气水合物 ; 南海 ; 水平井 ; 直井 ; 产气效率 ; 游离气 ; 饱和度
  • 英文关键词:gas hydrate;;South China Sea;;horizontal well;;vertical well;;gas production efficiencies;;free gas;;saturation
  • 中文刊名:HYGC
  • 英文刊名:The Ocean Engineering
  • 机构:中国海洋大学环境科学与工程学院;山东省海洋环境地质工程重点实验室;海洋科学与技术国家实验室海洋地质过程与环境功能实验室;
  • 出版日期:2019-07-30
  • 出版单位:海洋工程
  • 年:2019
  • 期:v.37
  • 基金:科技部重点研发项目(2017YFC0307701)
  • 语种:中文;
  • 页:HYGC201904013
  • 页数:10
  • CN:04
  • ISSN:32-1423/P
  • 分类号:110-119
摘要
以现有的南海神狐海域SH2钻孔资料为基础,建立起了与试采站位类似的"水合物层—游离气层"成藏模型,利用TOUGH+Hydrate数值模拟软件,对开采井内产气的来源问题做出了定量解释;分别使用直井和水平井降压开采方式,对"水合物层—游离气层"的储层进行了产气效率、储层开采程度方面的比较。结果表明:1)对研究工况,使用直井降压开采时,前100 d内井内气体有16%是直接来源于下部游离气层,且仍有很大部分游离气是向上迁移至水合物层中后产出,最终游离气层的贡献可达40%左右; 2)直井开采易生成二次水合物,而使用水平井开采时,游离气的向上迁移会带动更深层热液的向上运动,能在很大程度上提高水合物分解速率,并能够防止二次水合物的形成; 3)对研究工况中的"水合物层—游离气层"储层进行长期开采时,水平井降压开采更具应用前景。
        We established a"hydrate-free gas"reservoir model using the existing SH2 drilling data to explore the production of gas in the South China Sea. Software TOUGH + Hydrate was employed to simulate the process of gas production. The efficiency of gas production using the depressurization method was assessed for both vertical and horizontal wells. In the vertical well studied,16 % of the gas volume was from the lower free gas layer in the first 100 days,while a large portion of gas production was attributed to the free gas migrated upward into the hydrate layer. The total contribution of free gas layer in this vertical well was estimated as 40%. Different from vertical wells vulnerable to secondary hydrate,the upward migration of free gas in horizontal wells resulted in hydrothermal fluids under the free gas moving upwards into the upper layers,then the rate of hydrate decomposition was improved significantly and the formation of secondary hydrate was prevented effectively. For the cases investigated,depressurization through horizontal wells shows potential in long-term exploration of"hydrate-free gas"stratigraphy.
引文
[1] MILKOV A V. Global estimates of hydrate-bound gas in marine sediments:how much is really out there[J]. Earth-Science Reviews,2004,66(3-4):183-197.
    [2] KLAUDA J B,SANDLER S I. Global distribution of methane hydrate in ocean sediment[J]. Energy&Fuels,2005,19(2):459-470.
    [3] SLOAN JR E D,KOH C. Clathrate hydrates of natural gases[M]. CRC Press,2007.
    [4] AHMADI G,JI C,SMITH D H. Production of natural gas from methane hydrate by a constant downhole pressure well[J].Energy Conversion and Management,2007,48(7):2053-2068.
    [5] KAWAMURA T,OHTAKE M,SAKAMOTO Y,et al. Experimental study on steam injection method using methane hydrate core samples[C]∥Proceedings of the Seventh ISOPE Ocean Mining Symposium. 2007.
    [6] NAJIBI H,CHAPOY A,HAGHIGHI H,et al. Experimental determination and prediction of methane hydrate stability in alcohols and electrolyte solutions[J]. Fluid Phase Equilibria,2009,275(2):127-131.
    [7] DUBREUIL-BOISCLAIR C,GLOAGUEN E,BELLEFLEUR G,et al. Non-Gaussian gas hydrate grade simulation at the Mallik site,Mackenzie Delta,Canada[J]. Marine and Petroleum Geology,2012,35(1):20-27.
    [8] UDDIN M,WRIGHT F,DALLIMORE S,et al. Gas hydrate dissociations in Mallik hydrate bearing zones A,B,and C by depressurization:effect of salinity and hydration number in hydrate dissociation[J]. Journal of Natural Gas Science and Engineering,2014,21:40-63.
    [9] YAMAMOTO K,TERAO Y,FUJII T,et al. Operational overview of the first offshore production test of methane hydrates in the Eastern Nankai Trough[C]∥Proceedings of the Offshore Technology Conference. 2014.
    [10]吴时国,王吉亮.南海神狐海域天然气水合物试采成功后的思考[J].科学通报,2018,63(1):2-8.(WU Shiguo,WANG Jiliang. On the China's successful gas production test from marine gas hydrate reservoirs[J]. Chinese Science Bulletin,2018,63(1):2-8.(in Chinese))
    [11]阮徐可,李小森,杨明军,等.天然气水合物二次生成及渗透率变化对降压开采的影响[J].石油学报,2015,36(5):612-619.(RUAN Xuke,LI Xiaosen,YANG Mingjun,et al. Influence of gas hydrate reformation and permeability changes on depressurization recovery[J]. Acta Petrolsi Scnica,2015,36(5):612-619.(in Chinese))
    [12] LI G,MORIDIS G J,ZHANG K,et al. Evaluation of gas production potential from marine gas hydrate deposits in Shenhu area of South China Sea[J]. Energy&Fuels,2010,24(11):6018-6033.
    [13]万义钊,吴能友,胡高伟,等.南海神狐海域天然气水合物降压开采过程中储层的稳定性[J].天然气工业,2018(4):117-128.(WAN Yizhao,WU Nengyou,HU Gaowei,et al. Reservoir stability in the process of natural gas hydrate production by depressurization in the Shenhu area of the South China Sea[J]. Natural Gas Industry,2018(4):117-128.(in Chinese))
    [14] SUN J,ZHANG L,NING F,et al. Production potential and stability of hydrate-bearing sediments at the site GMGS3-W19 in the South China Sea:A preliminary feasibility study[J]. Marine and Petroleum Geology,2017,86:447-473.
    [15]金光荣,许天福,刘肖,等.天然气水合物降压热激法模拟开采方案优化研究[J].中南大学学报:自然科学版,2015,46(4):1534-1543.(JIN Guangrong,XU Tianfu,LIU Xiao,et al. Optimization of gas production from hydrate deposit using joint depressurization and thermal stimulation[J]. Journal of Central south University,2015,46(4):1534-1543.(in Chinese))
    [16] LI G,MORIDIS G J,ZHANG K,et al. The use of huff and puff method in a single horizontal well in gas production from marine gas hydrate deposits in the Shenhu Area of South China Sea[J]. Journal of Petroleum Science and Engineering,2011,77(1):49-68.
    [17] FENG J C,LI X S,LI G,et al. Numerical investigation of hydrate dissociation performance in the South China Sea with different horizontal well configurations[J]. Energies,2014,7(8):4813-4834.
    [18] LI G,LI X S,LI B,et al. Methane hydrate dissociation using inverted five-spot water flooding method in cubic hydrate simulator[J]. Energy,2014,64:298-306.
    [19] BRIAIS A,PATRIAT P,TAPPONNIER P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea:Implications for the Tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research:Solid Earth,1993,98(B4):6299-6328.
    [20] ZHANG G,HUANG Y,ZHU Y,et al. Prospect of gas hydrate resources in the South China Sea[J]. Marine Geology and Quaternary Geology,2002,22(1):75-82.
    [21] ZHANG H Q,YANG S X,WU N Y,et al. Successful and surprising results for China's first gas hydrate drilling expedition[J].Fire in the Ice,2007,7(3):6-9.
    [22]宁伏龙,刘力,李实,等.天然气水合物储层测井评价及其影响因素[J].石油学报,2013,34(3):591-606.(NING Fulong,LIU Li,LI Shi,et al. Well logging assessment of natural gas hydrate reservoirs and relevant influential factors[J]. Acta Petrolsi Scnica,2013,34(3):591-606.(in Chinese))
    [23] ZHANG H,YANG S,WU N. GMGS-1 science team:China's first gas hydrate expedition successful[R]. Fire in the Ice:Methane Hydrate Newsletter,National Energy Technology Laboratory,US Department of Energy,Spring/Sum-mer,2007.
    [24] YANG S X,ZHANGH M,LIANG J Q,et al. Preliminary results of China's third gas hydrate drilling expedition:A critical step from discovery to development in the South China Sea[J]. Center for Natural Gas and Oil,2015,412:386-7614.
    [25] WANG X,HUTCHINSON D R,WU S,et al. Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area,South China Sea[J]. Journal of Geophysical Research:Solid Earth,2011,116(5):10.1029/2010JB007944.
    [26] WU N,YANG S,ZHANG H,et al. Preliminary discussion on gas hydrate reservoir system of Shenhu area,North Slope of South China Sea[C]∥Proceedings of the 6th International Conference on Gas Hydrates(ICGH 2008).2008.
    [27] WU N,YANG S,ZHANG H,et al. Gas hydrate system of Shenhu area,northern South China Sea:Wire-line logging,geochemical results and preliminary resources estimates[C]∥Proceedings of the Offshore Technology Conference. 2010.
    [28] MORIDIS G J. User's manual for the hydrate v1.5 option of TOUGH+v1.5:A code for the simulation of system behavior in hydrate-bearing geologic media[R]. Ernest Orlando Lawrence Berkeley National Laboratory,Berkeley,CA(US),2014.
    [29] WILDER J W,MORIDIS G J,WILSON S J,et al. An international effort to compare gas hydrate reservoir simulators[C]∥Proceedings of the 6th International Conference on Gas Hydrates(ICGH 2008). 2008.
    [30] MORIDIS G J,REAGAN M T. Gas production from oceanic Class 2 hydrate accumulations[R]. Ernest Orlando Lawrence Berkeley National Laboratory,Berkeley,CA(US),2007.
    [31] MORIDIS G J,REAGAN M T. Strategies for gas production from oceanic Class 3 hydrate accumulations[C]∥Proceedings of the Offshore Technology Conference. 2007.
    [32] RUTQVIST J,MORIDIS G J,GROVER T,et al. Coupled multiphase fluid flow and wellbore stability analysis associated with gas production from oceanic hydrate-bearing sediments[J]. Journal of Petroleum Science and Engineering,2012,92:65-81.
    [33] MORIDIS G J,COLLETT T S,BOSWELL R,et al. Toward production from gas hydrates:current status,assessment of resources,and simulation-based evaluation of technology and potential[J]. SPE Reservoir Evaluation&Engineering,2009,12(5):745-771.
    [34] LIANG H,SONG Y,CHEN Y. Numerical simulation for laboratory-scale methane hydrate dissociation by depressurization[J].Energy Conversion and Management,2010,51(10):1883-1890.
    [35] MYSHAKIN E,LIN J S,UCHIDA S,et al. Numerical studies of depressurization-induced gas production from an interbedded marine turbidite gas hydrate reservoir model[C]∥Proceedings of the 9th International Conference on Gas Hydrates. 2017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700