用户名: 密码: 验证码:
多种材料对水中氨氮的吸附特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Adsorption Properties of Ammonia Nitrogen in Aqueous Solution by Various Materials
  • 作者:焦巨龙 ; 杨苏文 ; 谢宇 ; 金位栋 ; 闫玉红 ; 徐彬
  • 英文作者:JIAO Ju-long;YANG Su-wen;XIE Yu;JIN Wei-dong;YAN Yu-hong;XU Bin;College of Environment and Chemical Engineering,Nanchang Hangkong University;National Engineering Laboratory for Lake Pollution Control and Ecological Restoration,Chinese Research Academy of Environmental Sciences;State Key Laboratory of Environmental Criteria and Risk Assessment,Chinese Research Academy of Environmental Sciences;
  • 关键词:材料 ; 氨氮 ; 吸附 ; 黑臭水体 ; 修复
  • 英文关键词:adsorption materials;;ammonia nitrogen;;adsorption;;polluted water body;;remediation
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:南昌航空大学环境与化学工程学院;中国环境科学研究院湖泊水污染治理与生态修复技术国家重点实验室;中国环境科学研究院环境基准与风险评估国家重点实验室;
  • 出版日期:2019-03-26 15:25
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家水体污染控制与治理科技重大专项(2017ZX07204005);; 南昌航空大学研究生创新专项(YC2017013)
  • 语种:中文;
  • 页:HJKZ201908028
  • 页数:9
  • CN:08
  • ISSN:11-1895/X
  • 分类号:239-247
摘要
针对黑臭水体中氨氮难以去除的问题,选取沸石、麦饭石、硅藻土、膨润土和活性炭这5种材料,通过实验考察所选材料对水中氨氮的吸附性能.结果表明,准二级动力学方程更加适用于5种材料的数据拟合,得出最大吸附量分别为2. 067 3、0. 998 2、0. 758 0、1. 748 6和1. 016 0 mg·g~(-1),且接近实验值,因此化学吸附是主要的吸附方式;采用Langmuir和Freundlich等温方程对数据进行拟合,得出硅藻土更适合Langmuir等温方程,属于单层吸附,其他4种材料则更加适合Freundlich等温方程为多层分子吸附,且5种材料的吸附都为有利吸附;通过投加量实验得知,沸石、硅藻土、膨润土和活性炭对氨氮去除率随投加量增加而升高,最大去除率分别为100%、10. 46%、49. 25%和16. 87%,而麦饭石先升高后降低,投加量为0. 4g时,取得最大值为48. 85%;在p H为4~10,沸石和麦饭石吸附量先增加后减少,而硅藻土、膨润土和活性炭的吸附量缓慢升高; 5种材料氨氮解吸量随初始浓度升高而升高.
        Focusing on the removal of ammonia nitrogen from polluted water,the absorption properties of five materials( zeolite,maifanite,diatomite,bentonite,and activated carbon) were tested. Results showed that the pseudo-second-order kinetic equation was suitable for data fitting for the five materials. The maximum theoretical adsorption capacities of the five materials were 2. 067 3 mg·g~(-1),0. 998 2 mg·g~(-1),0. 758 0 mg·g~(-1),1. 748 6 mg·g~(-1),and 1. 016 0 mg·g~(-1),respectively,which were close to the experimental value. Chemical-based adsorption was the main mode of adsorption. Data for diatomite were fitted using the Langmuir isotherm equation,and belonged to the single-layer molecular adsorption group,while the other four materials were fitted using the Freundlich isotherm equation,belonging to the multi-layer molecular adsorption group. Moreover,the results showed that the removal rates of ammonia nitrogen by zeolite,diatomite,bentonite,and activated carbon increased with an increase in dosage,and the maximum removal rates were 100%,10. 46%,49. 25%,and 16. 87%,respectively. A maifanite dosage of 0. 4 g achieved the maximum removal rate of 48. 85%. At p H 4-10,the adsorption capacities of zeolite and maifanite first increased and then decreased,while that of diatomite,bentonite,and activated carbon slowly increased. The desorption capacity of the five tested materials increased with an increase in the initial concentration of ammonia nitrogen.
引文
[1]王旭,王永刚,孙长虹,等.城市黑臭水体形成机理与评价方法研究进展[J].应用生态学报,2016,27(4):1331-1340.Wang X,Wang Y G,Sun C H,et al.Formation mechanism and assessment method for urban black and odorous water body:a review[J].Chinese Journal of Applied Ecology,2016,27(4):1331-1340.
    [2]何岩,沈叔云,黄民生,等.城市黑臭河道底泥内源氮硝化-反硝化作用研究[J].生态环境学报,2012,21(6):1166-1170.He Y,Shen S Y,Huang M S,et al.Research of nitrificationdenitrification regarding endogenous nitrogen from urban malodorous river sediments:a review[J].Ecology and Environmental Sciences,2012,21(6):1166-1170.
    [3]郑晨.炭黑的改性及其吸附水中氮磷的效能和机制研究[D].哈尔滨:哈尔滨工业大学,2016.Zheng C.Modification of carbon black and its efficiency and mechanisms of adsorbing ammonia nitrogen and phosphate in water[D].Harbin:Harbin Institute of Technology,2016.
    [4]Miladinovic N,Weatherley L R.Intensification of ammonia removal in a combined ion-exchange and nitrification column[J].Chemical Engineering Journal,2008,135(1-2):15-24.
    [5]张楠.铝锰&沸石复合吸附材料强化去除水中氨氮与磷酸盐[D].西安:西安建筑科技大学,2018.Zhang N.Study on the enhanced removal of ammonium and phosphate from aqueous solution by granular aluminummanganese bimetal oxide&zeolite composite adsorbent[D].Xi'an:Xi'an University of Architecture and Technology,2018.
    [6]Naseem R,Tahir S S.Removal of Pb(II)from aqueous/acidic solutions by using bentonite as an adsorbent[J].Water Research,2001,35(16):3982-3986.
    [7]李琨琪.基于改性沸石吸附剂对染料废水的吸附研究[D].保定:华北电力大学(保定),2016.Li K Q.Modified zeolite-based adsorbents for dye removal in wastewater treatment[D].Baoding:North China Electric Power University(Baoding),2016.
    [8]胡秀荣,吕光烈,杨芸.六氨合钴离子交换法测定粘土中阳离子交换容量[J].分析化学,2000,28(11):1402-1405.Hu X R,Lu G L,Yang Y.Determination of cation-exchange capacity in clay[Co(NH3)6]3+exchange method[J].Chinese Journal of Analytical Chemistry,2000,28(11):1402-1405.
    [9]孙晓慧,卢瑛莹,陈曙光,等.膨润土对复合污染中表面活性剂的吸附及机理[J].环境科学,2007,28(4):838-842.Sun X H,Lu Y Y,Chen S G,et al.Sorption and mechanism of surfactants on bentonite in combined pollution[J].Environmental Science,2007,28(4):838-842.
    [10]Aguedal H,Iddou A,Aziz A,et al.Effect of thermal regeneration of diatomite adsorbent on its efficacy for removal of dye from water[J].International Journal of Environmental Science and Technology,2019,16(1):113-124.
    [11]Mo W,He Q Z,Su X J,et al.Preparation and characterization of a granular bentonite composite adsorbent and its application for Pb2+adsorption[J].Applied Clay Science,2018,159:68-73.
    [12]范延臻,王宝贞.活性炭表面化学[J].煤炭转化,2000,23(4):26-30.Fan Y Z,Wang B Z.Surface chemistry of activated carbon[J].Coal Conversion,2000,23(4):26-30.
    [13]张翔凌,邓礼楚,方晨佳,等.不同类型LDHs负载改性麦饭石对Cr(Ⅵ)吸附性能[J].环境科学,2019,40(1):300-309.Zhang X L,Deng L C,Fang C J,et al.Adsorption of Cr(Ⅵ)in water by maifanite modified with different LDHs coatings[J].Environmental Science,2019,40(1):300-309.
    [14]马锋锋,赵保卫,刁静茹,等.牛粪生物炭对水中氨氮的吸附特性[J].环境科学,2015,36(5):1678-1685.Ma F F,Zhao B W,Diao J R,et al.Ammonium adsorption characteristics in aqueous solution by dairy manure biochar[J].Environmental Science,2015,36(5):1678-1685.
    [15]唐登勇,黄越,胥瑞晨,等.改性芦苇生物炭对水中低浓度磷的吸附特征[J].环境科学,2016,37(6):2195-2201.Tang D Y,Huang Y,Xu R C,et al.Adsorption behavior of low concentration phosphorus from water onto modified reed biochar[J].Environmental Science,2016,37(6):2195-2201.
    [16]姜博汇,林建伟,詹艳慧,等.不同锆负载量锆改性膨润土对水中磷酸盐吸附作用的对比[J].环境科学,2017,38(6):2400-2411.Jiang B H,Lin J W,Zhan Y H,et al.Comparison of phosphate adsorption onto zirconium-modified bentonites with different zirconium loading levels[J].Environmental Science,2017,38(6):2400-2411.
    [17]杨雪,张士秋,侯其东,等.生物炭的制备及其镁改性对污染物的吸附行为研究[J].环境科学学报,2018,38(10):4032-4043.Yang X,Zhang S Q,Hou Q D,et al.Study on the preparation of biochar and adsorption behavior of Mg-modified biochar to pollutants[J].Acta Scientiae Circumstantiae,2018,38(10):4032-4043.
    [18]许保玖.当代给水与废水处理原理讲义[M].北京:清华大学出版社,1983.
    [19]刘莹,刘晓晖,张亚茹,等.三种人工湿地填料对低浓度氨氮废水的吸附特性[J].环境化学,2018,37(5):1118-1127.Liu Y,Liu X H,Zhang Y R,et al.Adsorption properties of low concentration ammonia nitrogen wastewater by three constructed wetland fillers[J].Environmental Chemistry,2018,37(5):1118-1127.
    [20]王丹赫,张宏华,林建伟,等.四氧化三铁改性沸石改良底泥对水中磷酸盐的吸附作用[J].环境科学,2018,39(11):5024-5035.Wang D H,Zhang H H,Lin J W,et al.Adsorption of phosphate from aqueous solutions on sediments amended with magnetitemodified zeolite[J].Environmental Science,2018,39(11):5024-5035.
    [21]黄华,王雅雄,唐景春,等.不同烧制温度下玉米秸秆生物炭的性质及对萘的吸附性能[J].环境科学,2014,35(5):1884-1890.Huang H,Wang Y X,Tang J C,et al.Properties of maize stalk biochar produced under different pyrolysis temperatures and its sorption capability to naphthalene[J].Environmental Science,2014,35(5):1884-1890.
    [22]于长江,董心雨,王苗,等.海藻酸钙/生物炭复合材料的制备及其对Pb(Ⅱ)的吸附性能和机制[J].环境科学,2018,39(8):3719-3728.Yu C J,Dong X Y,Wang M,et al.Preparation and characterization of a calcium alginate/biochar microsphere and its adsorption characteristics and mechanisms for Pb(II)[J].Environmental Science,2018,39(8):3719-3728.
    [23]彭同江,孙红娟,孙金梅,等.金云母-蛭石间层矿物阳离子交换容量的影响因素研究[J].矿物岩石,2009,29(1):14-19.Peng T J,Sun H J,Sun J M,et al.Research on the affecting factors of cation exchanging capacity of phlogopite-vermiculite interstratified mineral[J].Journal of Mineralogy and Petrology,2009,29(1):14-19.
    [24]Putra E K,Pranowo R,Sunarso J,et al.Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater:mechanisms,isotherms and kinetics[J].Water research,2009,43(9):2419-2430.
    [25]穆卫军.硅基介孔材料改性吸附/捕集CO2研究[D].天津:天津大学,2012.Mu W J.Study on modified silicon-based mesoporous materials for CO2adsorption and capture[D].Tianjin:Tianjin University,2012.
    [26]Vilar V J P,Botelho C M S,Boaventura R A R.Equilibrium and kinetic modelling of Cd(II)biosorption by algae Gelidium and agar extraction algal waste[J].Water Research,2006,40(2):291-302.
    [27]安增莉,侯艳伟,蔡超,等.水稻秸秆生物炭对Pb(Ⅱ)的吸附特性[J].环境化学,2011,30(11):1851-1857.An Z L,Hou Y W,Cai C,et al.Lead(Ⅱ)adsorption characteristics on different biochars derived from rice straw[J].Environmental Chemistry,2011,30(11):1851-1857.
    [28]Sugahara H,Takano Y,Ogawa N O,et al.Nitrogen isotopic fractionation in ammonia during adsorption on silicate surfaces[J].ACS Earth and Space Chemistry,2017,1(1):24-29.
    [29]胡洁蕴,李淑芹,宋歌,等.北京市北运河沉积物对氮、磷的吸附/解吸动力学特征[J].湖泊科学,2018,30(3):650-659.Hu J Y,Li S Q,Song G,et al.Adsorption/desorption dynamic characteristic of sediments on nitrogen and phosphorus in the north Grand Canal of Beijing[J].Journal of Lake Sciences,2018,30(3):650-659.
    [30]王冰,赵闪闪,秦治家,等.生物质炭对黑土吸附-解吸硝态氮性能的影响[J].农业环境科学学报,2016,35(1):115-121.Wang B,Zhao S S,Qin Z J,et al.Effect of biochar on adsorption-desorption characteristics of nitrate nitrogen in black soil[J].Journal of Agro-Environment Science,2016,35(1):115-121.
    [31]Wang F L,Alva A K.Ammonium adsorption and desorption in sandy soils[J].Soil Science Society of America Journal,2000,64(5):1669-1674.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700