用户名: 密码: 验证码:
珠江源区南、北盘江丰水期水化学组成特征及来源分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Chractristic and soursce analysis of major ions in Nanpanjiang and Beipanjiang at the upper Pearl River during the wet season
  • 作者:吴起鑫 ; 韩贵琳 ; 李富山 ; 唐杨
  • 英文作者:WU Qixin;HAN Guilin;LI Fushan;TANG Yang;Key Laboratory of Karst Environment and Geohazard Prevention,Ministry of Education,Guizhou University;The State Laboratory of Environmental Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences;MOE Key Laboratory of Groundwater Circulation and Evolution,School of Water Resources and Environment,China University of Geosciences ( Beijing);
  • 关键词:水化学 ; 化学风化 ; 人为影响 ; 南盘江 ; 北盘江
  • 英文关键词:water chemistry,chemical weathering,anthropogenic impact,Nanpanjiang,Beipanjiang
  • 中文刊名:HJHX
  • 英文刊名:Environmental Chemistry
  • 机构:贵州大学喀斯特环境与地质灾害防治教育部重点实验室;中国科学院地球化学研究所环境地球化学国家重点实验室;中国地质大学(北京)水资源与环境学院地下水循环与环境演化教育部重点实验室;
  • 出版日期:2015-09-01 12:05
  • 出版单位:环境化学
  • 年:2015
  • 期:v.34
  • 基金:国家自然科学基金(41325010);; 国家重大基础项目(2013CB956703);; 博士后基金(2652013055)资助
  • 语种:中文;
  • 页:HJHX201507009
  • 页数:8
  • CN:07
  • ISSN:11-1844/X
  • 分类号:57-64
摘要
为了解珠江上游高侵蚀地区流域水环境现状,于2014年7月采集了珠江源区的北盘江和南盘江河水样品进行分析.结果表明,南、北盘江丰水期河水p H值在7.4—8.4之间,为弱碱性;TDS平均含量为307 mg·L-1,高于珠江、长江干流.Ca2+和Mg2+是主要的阳离子,含量分别为61.64、10.98 mg·L-1,HCO-3是最主要的阴离子,含量范围在71.86—222.89 mg·L-1之间.离子组成分析和相关性分析表明,研究区河水离子主要受碳酸盐岩风化控制,存在部分玄武岩、砂岩的影响,硫酸参与了流域碳酸盐岩的风化,农业活动也有部分贡献.SO2-4和NO-3相关性分析表明,北盘江SO2-4和NO-3应该主要来源于煤炭及煤炭工业,而南盘江则受到更强烈的城镇和化工废水的影响.Cl-/Na+与SO2-4/Na+、NO-3/Na+相关性表明,Cl-与NO-3有共同的来源,受农业活动影响明显.南盘江流域管理要侧重城镇工业废水、农业面源污染治理,而北盘江流域除了城镇、工业废水外,还需要特别加强对流域内煤炭企业的的监管.
        Nanpanjiang and Beipanjiang water samples were collected and analyzed to understand the aquatic environment of the serious erosion area at upper Pear River. The result indicated that,p H of Nanpanjiang and Beipanjiang varied from 7.4 to 8.4,which was slightly alkaline. The average TDS value was 307 mg·L-1,higher than those in main streams of Pear River and Changjiang River.Ca2+and Mg2+were the main cations,with concentrations of 61. 64 mg·L-1and 10.98 mg·L-1respectively. HCO-3was the major anion,with the concentration varing between 71. 86 mg·L-1and222.89 mg·L-1. Furthermore,ion composition and ion ratio analysis suggested that the ions in the rivers were impacted mainly by chemical weathering of carbonate rock and partially by the weathering of basalt and sandstone. It also demonstrated that sulfuric acid and agricultural activities participated in the carbonate rock weathering. SO2-4and NO-3correlation analysis showed that,these anions in Beipanjiang mainly stemmed from coal-bearing stratum and coal industry,while those in Nanpanjiangderived primarily from urban and industrial sewage. Cl-/ Na+,SO2-4/ Na+and NO-3/ Na+correlation analysis illustrated that Cl-and NO-3shared the same source,i.e.,agricultural activities.It was thus suggested that, at Nanpanjiang watershed the focus of pollution control should be urban and industrial sewage and agricultural non-point source pollution,while urban and industrial sewage control and coal industry supervision should be emphasized for Beipanjiang catchment.
引文
[1]Moosdorf N,Hartmann J,Lauerwald R,et al.Atmospheric CO2consumption by chemical weathering in North America[J].Geochimica et Cosmochimica Acta,2011,75(24):7829-7854
    [2]Noh H,Huh Y,Qin J,et al.Chemical weathering in the three rivers region of Eastern Tibet[J].Geochimica et Cosmochimica Acta,2009,73(7):1857-1877
    [3]Regnier P,Friedlingstein P,Ciais P,et al.Anthropogenic perturbation of the carbon fluxes from land to ocean[J].Nature Geoscience,2013,6(8):597-607
    [4]刘丛强,蒋颖魁,陶发祥,等.西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环[J].地球化学,2008,37(4):404-414
    [5]Han G L,Liu C Q.Water geochemistry controlled by carbonate dissolution:A study of the river waters draining karst-dominated terrain,Guizhou Province,China[J].Chemical Geology,2004,204(1):1-21
    [6]Butman D,Raymond P A.Significant efflux of carbon dioxide from streams and rivers in The United States[J].Nature Geoscience,2011,4(12):839-842
    [7]Li S L,Calmels D,Han G L,et al.Sulfuric acid as an agent of carbonate weathering constrained byδ13CDIC:Examples from Southwest China[J].Earth and Planetary Science Letters,2008,27(3):189-199
    [8]陈静生,关文荣,夏星辉,等.长江干流近三十年来水质变化探析[J].环境化学,1998,27(1):8-13
    [9]陈静生,王飞越,何大伟.黄河水质地球化学[J].地学前缘,2006,13(1):58-73
    [10]过常龄.黄河流域河流水化学特征初步分析[J].地理研究,1987,6(3):65-73
    [11]陈静生,何大伟.珠江水系河水主要离子化学特征及成因[J].北京大学学报(自然科学版),1999,35(6):61-68
    [12]Wu L L,Huh Y,Qin J H,et al.Chemical weathering in the upper Huang He(Yellow River)draining the eastern Qinghai-Tibet Plateau[J].Geochimica et Cosmochimica Acta,2005,69(22):5279-5294
    [13]王建,韩海东,赵求东,等.塔里木河流域水化学组成分布特征[J].干旱区研究,2013,30(1):10-15
    [14]Wu W H,Yang J D,Xu S J,et al.Geochemistry of the headwaters of the Yangtze River,Tongtian He and Jinsha Jiang:Silicate weathering and CO2consumption[J].Applied Geochemistry,2008,23(12):3712-3727
    [15]Sun H G,Han J T,Li D,et al.Chemical weathering inferred from riverine water chemistry in the lower Xijiang basin,south China[J].Science of the Total Environment,2010,408(20):4749-4760
    [16]Li S Y,Xu Z F,Wang H,et al.Geochemistry of the upper Han River basin,China:3:Anthropogenic inputs and chemical weathering to the dissolved load[J].Chemical Geology,2009,264(1):89-95
    [17]陈生华,王世杰,肖德安,等.典型喀斯特表层岩溶带地下水化学特征——以贵州清镇王家寨喀斯特小流域为例[J].生态环境学报,2010,19(9):2130-2135
    [18]韩贵琳,刘丛强.贵州喀斯特地区河流的研究——碳酸盐岩溶解控制的水文地球化学特征[J].地球科学进展,2005,20(4):394-406
    [19]Xu Z F,Liu C Q.Water geochemistry of the Xijiang basin rivers,south China:Chemical weathering and CO2consumption[J].Applied Geochemistry,2010,25(10):1603-1614
    [20]Liu B J,Liu C Q,Zhang G,et al.Chemical weathering under mid-to cool temperate and monsoon-controlled climate:A study on water geochemistry of the Songhuajiang River system,northeast China[J].Applied Geochemistry,2013,31:265-278
    [21]徐志方,唐杨.南水北调中线水源地河水地球化学特征与流域侵蚀[J].矿物岩石地球化学通报,2011,30(1):26-30
    [22]曹建华,杨慧,康志强.区域碳酸盐岩溶蚀作用碳汇通量估算初探:以珠江流域为例[J].科学通报,2011,56(26):2181-2187
    [23]丁虎,刘丛强,郎赟超,等.河流向大气释放碳研究:机遇与挑战[C].中国矿物岩石地球化学学会第14届学术年会论文摘要专辑,2013
    [24]蒋勇军,袁道先,张贵,等.岩溶流域土地利用变化对地下水水质的影响——以云南小江流域为例[J].自然资源学报,2004,19(6):707-715
    [25]陶贞,高全洲,王振刚,等.湿热山地丘陵流域化学风化过程的碳汇估算[J].科学通报,2011,56(26):2188-2197
    [26]吴卫华,郑洪波,杨杰东,等.硅酸盐风化与全球碳循环研究回顾及新进展[J].高校地质学报,2012,18(2):215-224
    [27]姚冠荣,高全洲.河流碳输移与陆地侵蚀-沉积过程关系的研究进展[J].水科学进展,2007,18(1):133-139
    [28]Liu Z H,Dreybrodt W,Wang H J.A new direction in effective accounting for the atmospheric CO2budget:Considering the combined action of carbonate dissolution,the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J].Earth-Science Reviews,2010,99(3):162-172
    [29]安和平,周家维.贵州南、北盘江流域土壤侵蚀现状及防治对策[J].水土保持学报,1994,8(3):36-45
    [30]杨成华,安和平.贵州南、北盘江流域植被类型的卫片解译与制图[J].贵州林业科技,1996,8(1):55-58
    [31]荆春燕,许海平.南盘江流域水污染控制研究[J].云南环境科学,2002,21(2):24-25
    [32]武艺,马利英.煤炭污染型河流底质污染现状分析——以北盘江贵州段为例[J].贵州大学学报(自然科学版),2009,26(5):130-134
    [33]沈诚,罗维,佘朝雯.贵州省南北盘江流域地下水污染现状研究[J].云南地理环境研究,2011,23(4):91-94
    [34]李思亮,韩贵琳,张鸿翔,等.硫酸参与喀斯特流域(北盘江)风化过程的碳同位素证据[J].地球与环境,2006,34(2):57-60
    [35]熊亚兰,王昌全,张科利,等.北盘江流域降雨量和径流量年际变化研究[J].水土保持研究,2010,17(5):30-34
    [36]向绪洪,邵磊,乔培军,等.珠江流域沉积物重矿物特征及其示踪意义[J].海洋地质与第四纪地质,2011,31(6):27-35
    [37]李丹.中国东部若干入海河流水化学特征与入海通量研究[D].上海:华东师范大学硕士学位论文,2009
    [38]李群,穆伊舟,周艳丽,等.黄河流域河流水化学特征分布规律及对比研究[J].人民黄河,2006,28(11):26-27,87
    [39]李晶莹,张经.流域盆地的风化作用与全球气候变化[J].地球科学进展,2002,17(3):411-419
    [40]Gibbs Ronald J.Mechanisms controlling world water chemistry[J].Science,1970,170(3962):1088-1090
    [41]Sheikh J A,Jeelani G,Gavali RS,et al.Weathering and anthropogenic influences on the water and sediment chemistry of Wular Lake,Kashmir Himalaya[J].Environmental Earth Sciences,2014,71(6):2837-2846
    [42]李甜甜,季宏兵,江用彬,等.赣江上游河流水化学的影响因素及DIC来源[J].地理学报,2007,62(7):764-775
    [43]李梦婕,江韬,何仁江,等.岩石风化对三峡库区农业小流域水化学特征的影响[J].中国环境科学,2012,32(8):1495-1501
    [44]Li S Y,Zhang Q F.Geochemistry of the upper Han River basin,China,1:Spatial distribution of major ion compositions and their controlling factors[J].Applied Geochemistry,2008,23(12):3535-3544
    [45]陈静生,王飞越,夏星辉.长江水质地球化学[J].地学前缘,2006,13(1):74-85
    [46]Xu Z F,Liu C Q.Chemical weathering in the upper reaches of Xijiang River draining the Yunnan-Guizhou Plateau,southwest China[J].Chemical Geology,2007,239(1):83-95
    [47]朱秉启,杨小平.塔克拉玛干沙漠天然水体的化学特征及其成因[J].科学通报,2007,52(13):1561-1566
    [48]胡春华,周文斌,夏思奇.鄱阳湖流域水化学主离子特征及其来源分析[J].环境化学,2011,30(9):1620-1626
    [49]韩贵琳,刘丛强.贵州乌江水系的水文地球化学研究[J].中国岩溶,2000,19(1):35-43
    [50]吴起鑫,韩贵琳,唐杨.三峡水库坝前水体水化学及溶解无机碳时空分布特征[J].环境科学学报,2012,32(3):654-661
    [51]Ming-hui H,Stallard R F.Edmond J M.Major ion chemistry of some large Chinese rivers[J].Nature,1982,298(5874):550-553
    [52]王兵,李心清,袁洪林,等.西江干流河水主要离子及锶同位素地球化学组成特征[J].地球化学,2009,38(4):345-353
    [53]郎赟超,刘丛强,Satake H,等.贵阳地表水-地下水的硫和氯同位素组成特征及其污染物示踪意义[J].地球科学进展,2008,23(2):151-159
    [54]刘卫国,彭子成,肖应凯.硼、氯同位素测定方法及地球化学研究进展[J].地球科学进展,1998,13(6):38-45
    [55]邢萌,刘卫国,胡婧.浐河、涝河河水硝酸盐氮污染来源的氮同位素示踪[J].环境科学,2010,31(10):2305-2310
    [56]张东,杨伟,赵建立.氮同位素控制下黄河及其主要支流硝酸盐来源分析[J].生态与农村环境学报,2012,28(6):622-627
    [57]宋晓敏,季宏兵,江用彬,等.丰水期红枫湖流域氮污染特征的变化规律研究[J].矿物岩石地球化学通报,2010,29(1):24-30
    [58]吴起鑫,韩贵琳,陶发祥,等.西南喀斯特农村降水化学研究:以贵州普定为例[J].环境科学,2011,32(1):26-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700