用户名: 密码: 验证码:
黑龙江省东部洋灰洞子铜矿床成矿机理:矿化蚀变、流体包裹体和稳定同位素示踪
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Metallogenic mechanism of Yanghuidongzi copper deposit in eastern Heilongjiang Province: Mineralization-alteration, fluid inclusions and stable isotope tracing
  • 作者:祝浚泉 ; 孙景贵 ; 门兰静 ; 古阿雷 ; 陈延峻 ; 明珠 ; 赵世峰 ; 闫佳
  • 英文作者:ZHU JunQuan;SUN JingGui;MEN LanJing;GU ALei;CHEN YanJun;MING Zhu;ZHAO ShiFeng;YAN Jia;College of Earth Sciences, Jilin University;Changchun Institute of Technology;
  • 关键词:地球化学 ; 流体包裹体 ; 稳定同位素 ; 矿床成因 ; 洋灰洞子 ; 铜矿床 ; 黑龙江省东部
  • 英文关键词:geochemistry;;fluid inclusion;;stable isotope;;ore genesis;;Yanghuidongzi;;copper deposit;;eastern Heilongjiang Province
  • 中文刊名:KCDZ
  • 英文刊名:Mineral Deposits
  • 机构:吉林大学地球科学学院;长春工程学院;
  • 出版日期:2016-04-15
  • 出版单位:矿床地质
  • 年:2016
  • 期:v.35
  • 基金:国家自然科学基金(编号:41390443;41172072)资助
  • 语种:中文;
  • 页:KCDZ201602010
  • 页数:16
  • CN:02
  • ISSN:11-1965/P
  • 分类号:155-170
摘要
洋灰洞子铜矿床位于延边-东宁成矿带,兴凯-延边岩浆构造带北端。矿床发育在花岗闪长斑岩与三叠系黄松群阎王殿组浅变质岩系接触带内侧的角砾岩带内,矿体多呈透镜状和脉状产出。矿床地质和岩相学特征研究表明:围岩蚀变主要是黑云母化、绢云母化、硅化、绿泥石化、绿帘石化及碳酸盐化;蚀变分带特征明显,以岩体为中心向外依次发育钾硅酸盐化带、绢英岩化带和青磐岩化带。矿石矿物主要是黄铜矿、黄铁矿和磁黄铁矿,其次是毒砂、辉钼矿、闪锌矿、方铅矿等。成矿过程可初步划分为4个阶段,从早到晚依次为:(Ⅰ)石英-黄铁矿-毒砂阶段;(Ⅱ)石英-磁黄铁矿-辉钼矿阶段;(Ⅲ)石英-多金属硫化物阶段和(Ⅳ)石英-碳酸盐阶段。流体包裹体类型有富液相(WL)、富气相(WV)、纯液相(L)和纯气相(V)以及含子晶三相(S)包裹体;其中Ⅰ阶段发育富液相包裹体;Ⅱ阶段发育富液相和含子矿物三相包裹体;Ⅲ阶段发育气液两相、纯液相和纯气相以及少量含子晶三相包裹体,呈孤立和群体分布;Ⅳ阶段主要是富液相和纯液相包裹体。流体包裹体均一温度分别为380~417℃、304~368℃、171~310℃和116~189℃,与划分的4个成矿阶段相对应。Ⅰ、Ⅱ阶段包裹体的w(Na Cleq)分别为4.63%~14.52%和5.09%~14.63%;Ⅲ阶段包裹体的w(Na Cleq)分布在1.73%~10.37%和13.44%~15.35%两个区间;Ⅳ阶段包裹体的w(Na Cleq)为0.87%~9.08%。早阶段包裹体气相成分主要为H2O,含少量CO2;主成矿阶段以H2O为主,含少量CH4;晚阶段只有H2O;指示伴随着温度降低,成矿过程由含CO2的水盐体系逐渐演化为含CH4的水盐体系。结合与成矿密切相关的花岗闪长斑岩的斑晶石英和各不同成矿阶段硫化物石英脉的石英H-O同位素及矿石矿物Pb同位素特征,认为成矿流体来源于花岗质岩浆作用或是出溶流体,成矿物质来源于深部岩浆。成岩成矿过程经历了花岗质岩浆上升侵位→流体出溶与含矿流体形成→隐爆作用→成矿流体与大气水混合等过程,并先后形成以黄铁矿化为主的蚀变岩和以铜为主的多金属硫化物石英脉、石英-碳酸盐脉。综合研究认为洋灰洞子铜矿床属于斑岩型铜矿床。
        The Yanghuidongzi copper deposit is located in the Yanbian-Dongning metallogenic belt along the northern part of Xingkai-Yanbian magmatic-tectonic zone. The orebodies are mainly hosted in breccia zone of the inner contact zone between granodioritic porphyry and Triassic metamorphic rocks of Yanwangdian Formation in Huangsong Group, which are mainly lenticular and veinlike in shape. Detailed studies of geological features of ore deposit geology and petrography indicate that the wall-rock alterations include mainly biotitization, sericitization, silicification, chloritization, epidotization and carbonation, and the alteration zoning from the lithosome to the wall rock is in order of potassium silicate zone, phyllic zone and propylitization zone. The ore minerals are mainly chalcopyrite, pyrite and pyrrhotite, subordinately arsenopyrite, molybdenite, sphalerite and galena. The ore-forming process can be divided into four stages:( Ⅰ) quartz-pyrite-arsenopyrite stage;( Ⅱ) quartz-pyrrhotite-molybdenite stage;( Ⅲ) quartz-polymetallic sulfides stage; and( Ⅳ) quartz-carbonate stage. The fluid inclusions in the Yanghuidongzi copper deposit are mainly liquid-rich inclusion( WL-type), vapor-rich inclusion( WV-type), pure liquid inclusion( L-type), pure vapor inclusion( V-type) and daughter-minerals bearing three-phase inclusion( S-type). The Ⅰstage quartz contains WL-type fluid inclusions, the Ⅱ stage quartz contains WL-type and very small S-type fluid inclusions; the Ⅲ stage quartz contains WL-type, WV-type, L-type,V-type and S-type fluid inclusions, which occurs in isolated form or in group; and the Ⅳ stage quartz contains WL-type and L-type fluid inclusions. The homogeneous temperature of the fluid inclusions from Ⅰ to Ⅳ stage are 380 ~ 417℃, 304 ~ 368℃, 171 ~ 310℃ and 116 ~ 189℃, respectively, which correspond to the four ore-forming stages. The w( Na Cleq) of fluid inclusions from Ⅰ and Ⅱ stage are 4. 63% ~ 14. 5% and 5. 09% ~14. 63%; the w( Na Cleq) of fluid inclusions from Ⅲ stage could be divided into two groups: 1. 73% ~ 10. 37% and13. 44% ~ 15. 35%; the w( Na Cleq) of Ⅳ stage is 0. 87% ~ 9. 08%. Laser Raman spectroscopic analysis indicates that the gas components of fluid inclusions at the early stage is dominated by H2 O and a little CO2, while the gas components of fluid inclusions from the main ore-forming stage is dominated by H2 O and a little CH4; the component of fluid inclusions from the late stage is only H2 O, suggesting that the ore-forming process evolved from the CO2-bearing salt-water system to CH4-bearing salt-water system gradually with decreasing temperature. The study of H-O isotope of quartz from phenocrysts of granodioritic porphyry and from sulfide quartz veins of every ore-forming stage and Pb isotope of sulfides show that the primary ore-forming fluid was mainly derived from granodioritic magma or was probably the product of exsolved fluid, and ore material was derived from deep magma. The ore-forming process experienced the emplacement of granitoid magmas, fluid exsolution, the formation of ore-bearing fluid, cryptoexplosion and the mixing of ore-forming fluid and meteoric water, which resulted in the formation of pyritization-dominated altered rock, copper-dominated sulfide quartz vein and quartz-carbonate vein in succession. Comparative studies suggest that the Yanghuidongzi copper deposit belongs to the porphyry copper type.
引文
Bodnar R J.1983.A method of calculating fluid inclusion volumes based on vapor bubble diameters and P-V-T-X properties of inclusion fluids[J].Econ.Geol.,78:535-542.
    Chu S X,Zeng Q D,Liu J M,Zhang W Q,Zhang Z L,Zhang S and Wang Z C.2010.Characteristics and its geological significance of fluid inclusions in Chehugou porphyry Mo-Cu deposit,Xilamulun molybdenum metallogenic belt[J].Acta Petrologica Sinica,26(8):2465-2481(in Chinese with English abstract).
    Clayton R N and Mayeda T K.1963.The use of brom in e pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis[J].Geochimica et.Cosmochimica Acta,27:43-52.
    Clayton R N,ONeil J R and Mayeda T K.1972.Oxygen isotope exchange between quartz and water[J].Journal of Geophysical Research,77:3057-3067.
    Geology and Mining Bureau of Heilongjiang Province.1993.Regional geology features in Heilongjiang[M].Beijing:Geological Publishing House.36-38(in Chinese).
    Hall D L,Sterner S M and Bodnar R J.1988.Freezing point depression of NaC l-KCl-H2O solution[J].Econ.Geol.,83:197-202.
    Hedenquist J W and Lowenstern J B.1994.The role of magmas in the formation of hydrothermal ore deposits[J].Nature,370:519-527.
    Heinrich C A.2007.Fluid-fluid interactions in magmatic-hydrothermal ore formation[J].Reviews in Mineralogy and Geochemistry,65(1):363-387.
    Hezarkhani A,Williams-Jones A E and Gammons C H.1999.Factors controlling porphyry copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit,Iran[J].Mineralium Deposita,34:770-783.
    Hoefs J.1997.Stable isotope geochemistry(4th Edition)[M].Berlin:Springer Verlag.1-201.
    Leng C B,Zhang X C,Wang S X,Wang W Q,Qin C J,Wu K W and Ren T.2008.S,Pb isotopic components and trace to source of oreforming materials of Jixueping porphyry copper deposit in northwest Yunnan Province[J].Mineral Petrol.,28(4):80-88(in Chinese).
    Liu B and Duan G X.1987.The density and isotopic formulae for NaC lH2O fluid inclusion and their applications[J].Mineral Technology,7(4):345-352(in Chinese).
    Liu B and Shen K.1999.Thermodynamics basis of fluid inclusion regional geology features in Heilongjiang[M].Beijing:Geological Publishing House.70-118(in Chinese).
    Liu W H and McP hai D C.2005.Thermodynamic properties of copper chloride complexes and copper transport in magmatic-hydrothermal solutions[J].Chemical Geology,221:21-39.
    Lowell J D and Guilbert J M.1970.Lateral and vertical alterationmineralization zoning in porphyry ore deposits[J].Econ.Geol.,65:373-408.
    Lu H Z,Fan H R,Ni P,Ou G X,Shen K and Zhang W H.2004.Fluid inclusion[M].Beijing:Science Press.1-487(in Chinese).
    Lu Y H,Zhang Y,Lai Y and Wang Y Z.2009.LA-ICP-MS zircon U-Pb dating of magmatism and mineralization in the Jinchang gold ore-field,Heilongjiang Province[J].Acta Petrologica Sinica,25(11):2902-2912(in Chinese with English abstract).
    LüC L,Xu D H,Li X P and Hao X Z.2012.Petrogenesis and crustmantle mixing of Early Jurassic granites in the Taipingling mountains,Heilongjiang Province[J].Geoscience,26(4):635-646(in Chinese with English abstract).
    LüJ C.2 0 1 4.The ore-forming geological conditions and prospecting orientation of Yanghuidongzi Cu deposit,Heilongjiang Province(dissertation for Master degree)[D].Suppervisor:YANGY C.Changchun:Jilin University.8 3 p(in Chinese with English abstract).
    LüJ C,Yang Y C,Han S J,Yan W Q,Zhang G B,Zhang B C and Zhao Q Q.2014.Geochemistry,zircon U-Pb dating and its geological implication of the granodiorite porphyry in the Yanghuidongzi copper deposit,Heilongjiang Province[J].Global Geology,33(1):59-75(in Chinese with English abstract).
    Meng X J,Hou Z Q and Li Z Q.2005.Fluid inclusions and ore-forming processes of three porphyry copper deposits in Gangdese belt,Tibet[J].Mineral Deposits,24(4):398-408(in Chinese with English abstract).
    Meng Z X.2012.Genesis of Yanghuidongzi copper deposit in Dongning county,Heilongjiang Province(dissertation for Master degree)[D].Suppervisor:SUN J G.Changchun:Jilin University.63(in Chinese with English abstract).
    Ohmoto H.1986.Stable isotope geochemistry of ore deposits[J].Reviews in Mineralogy,16(1):491-559.
    Ohmoto H and Goldhaber M B.1997.Sulfur and carbon isotopes[A].In:Barnes H L,ed.Geochemistry of hydrothermal ore deposits(3rd Edition)[C].New York:John Wiley and Sons.517-612.
    Potter R W.1978.The volumetric properties of aqueous sodium chloride solutions from 0℃to 500℃at pressures up to 2000 Bars based on a regression of available data in the literature[J].U.S.Geol.Survey Bull.,1421-C,36.
    Qiu N S,Zhang S W and Jin Z J.2001.Migration models of hydrocarbon fluids in the Dongying epression-evidences from boiling fluid inclusions[J].Experimental Petroleum Geology,23(4):403-407(in Chinese).
    Reed M H and Palandri J.2006.Sulfide mineral precipitation from hydrothermal fluids[J].Sulfide Mineralolgy and Geochemistry,61:609-631.
    Roedder E.1984.Fluid inclusion[J].Reviews in Mineralogy,12:644-645.
    Rui Z Y,Huang C K,Qi G M,Xu J and Zhang H T.1984.Porphyry copper(Molybdenum)deposits of China[M].Beijing:Geological Publishing House.1-350(in Chinese).
    Rui Z Y,Zhang H T,Wang L S and Chen R Y.2003.Approach to oreforming conditions in light of ore fluid inclusions[J].Mineral Deposits,22(1):13-23(in Chinese with English abstract).
    Sheppard S M F.1986.Characterization and isotopic variations in natural waters[J].Reviews in Mineralogy,16:165-183.
    Shi Y X,Yang N and Yang Y.2009.Ore geology and fluid inclusion geochemistry of the Sandaozhuang Mo-W deposit in Luanehuan county,Hennan Province[J].Acta Petrologica Sinica,25(10):2575-2587(in Chinese with English abstract).
    Sillitoe R H.1973.Geology of the Los Pelambres porphyry copper deposit,Chile[J].Econ.Geol.,68:1-10.
    Sillitoe R H.1997.Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the Circum-Pacific region[J].Australian Journal of Earth Science,44(3):373-388.
    Sun J G,Chen L,Zhao J K,Men L J,Pang W,Chen D and Liang S N.2008.SHRIMP U-Pb dating of zircons from Late Yanshanian granitic complex in Xiaoxinancha gold-rich copper orefield of Yanbian and its geological implications[J].Mineral Deposits,27(3):319-328(in Chinese with English abstract).
    Wang X Z,Zhao Q Q and Dong M Q.2004.Characteristics of the ore bearing magmatic body associated with the Yanghuidongzi copper deposit of Dongning County,Heilongjiang Province[J].Mineral Resources and Geology,18(5):450-454(in Chinese).
    Wu F Y,Sun D Y,Ge W C,Zhang Y B,Matthew L G,Simon A W and Bor-Ming J.2011.Geochronology of the Phanerozoic granito in northeastern China[J].Journal of Asian Earth Sciences,41(1):1-30.
    Yang Q and Wang H L.2014.Metallogenic regularity and prediction of copper polymetallic deposit in Yanghuidongzi area,Heilongjiang Province[J].Gold,7(35):31-36(in Chinese).
    Yang Z W,Dong C T,Xia T Y and Yu Y.2005.Geological characters and genesis of Yanghuidongzi copper deposit in Heilongjiang Province[J].Geology and Prospecting,41(2):27-29(in Chinese).
    Zartman R E and Doe B R.1981.Plumbotectonics-the model[J].Tectonophysics,75(1-2):135-162.
    Zartman R E and Smith J V.2009.Mineralogy and U-Th-Pb age of a uranium-bearing jasperoid vein,Sunshine Mine,Coeurd,Alene district,Idaho,USA[J].Chemical Geology,61:185-194.
    Zhang D H.1997.Overview of research on the ore depositional mechanisms ore-forming fluid[J].Geological Science and Technology Information,16(3):53-58(in Chinese).
    Zhang Q and Pan S X.2000.An interpretation of ore lead sources from lead isotopic compositions of some ore deposits in China[J].Geochimica,29(3):231-238(in Chinese).
    Zhao Y D,Chi X G,Che J Y,Liu J F and Zhao Z.2009.Geochemica characteristics and tectonic setting of Late Triassic granites in Yanbian:Dongning area[J].Journal of Jilin University(Earth Science E-dition),39(3):425-434(in Chinese with English abstract).
    褚少雄,曾庆栋,刘建明,张伟庆,张作伦,张松,汪在聪.2010.西拉沐伦钼矿带车户沟斑岩型钼-铜矿床成矿流体特征及其地质意义[J].岩石学报,26(8):2465-2481.
    郝文丽,王枫,许文良,唐杰,高福红.2015.黑龙江东部“新元古代"黄松群杨木组沉积时限和物源组成:来自锆石U-Pb年代学的制约[J].地球科学与环境学报,37(4):024-034.
    黑龙江省地质矿产局.1993.黑龙江省区域地质志[M].北京:地质出版社.36-38.
    冷成彪,张兴春,王守旭,王外全,秦朝建,吴孔文,任涛.2008.滇西北雪鸡坪斑岩铜矿S,Pb同位素组成及对成矿物质来源的示踪[J].矿物岩石,28(4):80-88.
    刘斌,段光贤.1987.NaC l-H2O溶液包裹体的密度式和等容式及其应用[J].矿物学报,7(4):345-352.
    刘斌,沈昆.1999.流体包裹体热力学基础[M].北京:地质出版社.70-118.
    卢焕章,范宏瑞,倪培,欧光习,沈昆,张文淮.2004.流体包裹体[M].北京:科学出版社.1-487.
    鲁颖淮,张宇,赖勇,王艳忠.2009.黑龙江金厂金矿田岩浆和成矿作用的LA-ICPMS锆石定年[J].岩石学报,25(11):2902-2913.
    吕俊超.2014.黑龙江省洋灰洞子铜矿床成矿地质条件及找矿方向(硕士学位论文)[D].导师:杨言辰.长春:吉林大学.1-83
    吕俊超,杨言辰,韩世炯,闫文强,张国宾,张本臣,赵清泉.2014.黑龙江洋灰洞子铜矿床花岗闪长斑岩地球化学、锆石U-Pb定年及地质意义[J].世界地质,33(1):59-75.
    吕长禄,徐东海,李新鹏,郝兴中.2012.黑龙江太平岭早侏罗世花岗岩成因及壳幔混合作用[J].现代地质,26(4):635-646.
    孟祥金,侯增谦,李振清.2005.西藏冈底斯三处斑岩铜矿床流体包裹体及成矿作用研究[J].矿床地质,24(4):398-408.
    孟兆贤.2012.黑龙江省东宁县洋灰洞子铜矿床的成因探讨(硕士论文)[D].导师:孙景贵.长春:吉林大学.1-63.
    邱楠生,张善文,金之钧.2001.东营凹陷油气流体运移模式探讨---来自沸腾包裹体的证据[J].石油实验地质,23(4):403-407.
    芮宗瑶,黄崇轲,齐国明,徐钰,张洪涛.1984.中国斑岩型铜(钼)矿床[M].北京:地质出版社.1-350.
    芮宗瑶,张洪涛,王龙生,陈仁义.2003.从流体包裹体研究探讨金属矿床成矿条件[J].矿床地质,22(1):13-23.
    石英霞,李诺,杨艳.2009.河南省栗川县二道庄铂钨矿床地质和流体包裹体研究[J].岩石学报,25(10):2575-2587
    孙景贵,陈雷,赵俊康,门兰静,逄伟,陈东,梁树能.2009.延边小西南岔富金铜矿田燕山晚期花岗杂岩的锆石SHRIMP U-Pb年龄及其地质意义[J].矿床地质,27(3):319-328.
    王秀芝,赵清泉,董明全.2004.黑龙江省东宁县洋灰洞子铜矿床成矿岩体特征[J].矿产与地质,18(105):450-454.
    杨钦,王恒亮.2014.黑龙江东宁洋灰洞子地区铜多金属矿床成矿规律与成矿预测[J].黄金,7(35):31-36.
    杨增武,董传统,夏统元,余友.2005.黑龙江省洋灰洞子铜矿床地质特征及成因探讨[J].地质与勘探,41(2):27-29.
    张德会.1997.成矿流体中金属沉淀机制研究综述[J].地球科技情报,16(3)53-58.
    张乾,潘家永,邵树勋.2000.中国某些金属矿床矿石铅来源的铅同位素诠释[J].地球化学,29(3):231-238.
    赵院冬,迟效国,车继英,刘建峰,赵芝.2009.延边-东宁地区晚三叠世花岗岩地球化学特征及其大地构造背景[J].吉林大学学报(地球科学版),39(3):425-434.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700