用户名: 密码: 验证码:
重金属污染土壤的脉冲电泳原位修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在经济腾飞与环境保护之间的关系尚未谐调的现实状况下,我国农业土壤的重金属土壤污染日益加剧。土壤重金属污染具有累积性、滞后性、隐蔽性,因此,土壤重金属污染一般极难恢复或治理。由于污染农业土壤的重金属是最容易通过农作物的吸收而直接进入人体危害人类健康,因此有效防治农业土壤的重金属污染是我国殛待解决的环境问题。
     电动力修复技术电化学原位修复技术是近几年发展起来的一种新兴原位土壤修复技术,是国际环境科学和工程领域的前沿课题之一。其修复之基本机理是:水饱和土壤在电场的作用下,水发生电解反应,阴极产生氢气和氢氧根离子,阳极产生氧气和氢离子,阳极产生的氢离子在电场和浓度梯度的作用下,向土壤内部迁移和扩散,氢离子在迁移和扩散的过程中,置换和溶解土壤中的重金属污染物,被溶解后的重金属污染物在电场和浓度梯度的作用下,以离子迁移和电渗的方式朝阴极方向定向迁移,从而达到去除土壤污染物的目的。电化学原位技术在较好解决土壤污染治理问题的同时,还可为城市污水厂的污泥和城市垃圾中的重金属的去除提供理论指导和技术支持,是具有重大实际应用价值和广阔发展前途的一种污染治理新技术。
     土壤重金属污染的电动力学修复方法发展所面临的最大难题,是土壤修复过程中所用直流电源产生的极化现象会导致修复能耗增加和修复效果降低或修复时间延长。因此,寻求一种更先进的土壤电化学原位修复电源及并确立其相应方法,是促使土壤污染电动力学修复方法的高效化的重要方向。本文即以此为研究课题。
     本文在导师相关研究成果的基础之上,对常规恒流直流电源与单向脉冲电源用于重金属污染土壤的电化学修复进行对比性研究,旨在通过这种探索研究来审视单向脉冲式电场应用于土壤原位电动力学修复的效果,进而评判该新方法实际应用的可行性。
     在修复条件被严格控制为完全相同的前提下,通过直流恒流电泳法和单向脉冲电泳法对重金属污染土壤原位修复的对比性实验,初步证实了单向脉冲电泳修复法的可行性和优越性。研究表明:本文研究条件的范围内,土壤的单向脉冲电泳原位修复与直流恒流原位修复法相比,在相同的修复时间下修复效果(即达到相同电泳移出重金属离子效果)提高了5.0%—28.8%;对应于相同修复效果,修复时间缩短了7.01%—42.3%,显现出能大幅度降低能耗或缩短修复时间的优点。由此可见,本研究所确立的土壤脉冲电泳原位修复方法,具有较大的应用前景。
Under the current condition of the disharmonic relationship between the economic development and environmental protection, soils contaminated by heavy metals in our national agriculture are worsening increasingly. Contaminated Soil is accumulative, lagging, dormant, and irreversible. Therefore, Contaminated Soil is usually difficult to be remedied and treated. For the heavy metal ions of agricultural soils contaminated enter the human body and endanger their healths indirectly through the crop's absorption easily, soil contaminated by heavy metals is one of the environmental problems that should be resolved urgently.
     Elecreoremediation technique is a new electrochemistry remediation technology gradually developing in recent years for dealing with heavy metal-contaminated soils .. in situ, and it is an advancing task of global environment science and technology. Its principle is that: application of direct electric current via electrodes immersed in a saturated soil results in oxidation at the anode, generating an acid front that cause desorption and dissolution of heavy metals. The desorped and dissoluted heavy metals are migrated toward cathode reservoir by electric field and ions concentration grads by the means of electromigration, electroosmosis and diffusing. Elecreoremediation technique not only solves the treatment problem of soil pollution, but provides theoretical guidance and technical support for the sludge in the city's wastewater treatment plant and the removal of heavy metals in the municipal solid waste. and It is of great practical value and broad prospects for development of a new pollution control technology.
     The most difficulty of electrokinetic remediation technology in soil contaminated by heavy metals is that polarization in soil remediation process through direct current will lead to an increase in energy consumption, influence of reduced repair and extension of remediation time. Therefore, the research for more advanced electrochemistry in situ soil and power for soil remediation and its corresponding method will be of important direction for enhancing high efficiency of electrochemical in situ soil, This paper will depend on the above as a research subject.
     On the basis of the corresponding results of the tutor's researchs, the comparative experiments on heavy metal-contaminated soils in situ of both direct current and one-way pulse electrophoresis method are studied. And their aims are to explore the research on one-way pulse electrophoresis remediation method for being applied to contaminated soil and further reseach of the feasibility of practical applications of the new method.
     Under the completely same condition of strictly controlled soil remediation, The results of the experiments showed that within the range of this article's research, the time of the removal efficiency of one-way pulse electrophoresis at both same voltages and others conditions rises by 5.0%to 28.8%;on the other hand ,the remediation time of one-way pulse electrophoresis, compared with direct current, was shorten by 7.01% to 42.3% at the same removal efficiency ; Seen from above, it can low energy consumption and has a great prospect in the industry.
引文
[1] 周泽义.中国蔬菜重金属污染及控制[J].资源生态环境网络研究动态,1999,10(3):21-27.
    [2] 张辉.南京地区土壤沉积物中重金属形态研究[J].环境科学学报,1997,17(3):346-351.
    [3] 王焕校.污染生态学[M].北京:高等教育出版社,2000:188-213.
    [4] 乔显亮,骆永明,吴胜春.污泥的土地利用及其环境影响[J].土壤,2000,32(2):79-85.
    [5] ANTHONY CARPI.Methyl mercury contamination and emission to the atmosphere from soil amended with municipal sewage sludge[J].J Environ Qual,1997,26(6):1650-1654.
    [6] 胡永定.荆马河区域土壤重金属污染的成因分析[J].江苏环境科技,1994(1):9-12.
    [7] 王文祥.山东省耕地重金属元素污染状况及其评价[J].土壤,1993,25(6):315-318.
    [8] 张清东,伍钧.重金属污染土壤的治理.绵阳经济技术高等专科学校学报,1997,14(3):14-18.
    [9] 曾昭华,曾雪萍,廖苏平.中国癌症与土壤环境中化学元素的相关性研究[J].江苏环境科 技,2002,15(2):13-15
    [10] 曾昭华,廖苏平,曾雪萍.化学元素与癌症的相关性及其分类的探讨[J].贵州环保科技,2002,8(3):5-9.17.
    [11] 丁圆.重金属污染土壤的治理方法[J].环境与开发,2000,15(2):25-28.
    [12] 王慎强,陈怀满.我国土壤环境保护研究的回顾与展望[J].土壤,1999,31(5):255-260.
    [13] 李永涛.土壤污染治理方法研究[J].农业环境保护,1997,16(3):118-122.
    [14] 余贵芬.重金属污染土壤治理研究现状[J].农业环境与发展,1998,4:22-24.
    [15] 夏星辉.土壤重金属污染治理方法研究进展[J].环境科学,1997,3:72-76.
    [16] 李书鼎.土壤植物系统重金属长期行为的研究[J].环境科学学报,2000,20(1):76-80.
    [17] 王新.不同作物对重金属复合污染物吸收特征研究[J].农业环境保护,1998,17(5):193-196.
    [18] 蒋建国,吴学龙,王伟等.重金属废物稳定化处理技术现状及发展.新疆环境保护,2000,22(1):6-10
    [19] Casagrande, L. The application of electro-osmosis to practical problems in foundations and earthworks. Building Technical Paper No. 30; H.M.S.O., London
    [20] Diana cabrera-Guzman, Joseph T. Swartzbaugh and Andrew W. Weisman. The use of electrokineics for hazardous waste site remediation. Air Waste Manage. ASSOC. 1990, 40:1670-1676
    [21] Yalcin B. Acar and Akram N. Alshawabkeh. Principles of electrokinetics remediation. Environ Sci. Technol, 1993, 27(13): 2638-2647
    [22] Probstem, R. E and Hicks R. E. Removal of contaminants from soils by electric fields. Sci. 1993, 260:498-503
    [23] Akram N. Alshawabkeh and Yalcin B Acar. Electrokinetic remediation· □:Theoretical model. Geotech. Engrg. 1996, 122(3): 186196.
    [24] Yeung, Albert T; Hsu, Cheng-nong; Menon, Rajendra M. Physicochemical soil-contaminant interactions during electrokinetic extraction. Haz. Mat. 1997, 55:221-237
    [25] Gale, R. J, Li, H, and Acar, Y B. Soil decontamination using electrokinetic processing. Studies in Environmental Science. 1994, 59:621-654
    [26] 傅献彩,沈文霞,姚天扬.物理化学,第一版,北京:高等教育出版社.1990.10
    [27] 杨建永,黄文锢.胶结充填电渗脱水实验研究.黄金.1996,17(3):24-26
    [28] Shang, Julle Q. Electrokinetic dewatering of clay slurries as engineered soil covers. Can. Geotech. 1997, 34(1): 7886
    [29] 于天仁等,土壤电化学性质及其研究方法,第二版,北京:科学出版社.1976.5
    [30] Paul C.Hiemenz,周祖康,马季铭译.胶体与表面化学原理,第一版,北京:北京大学出版社。1986.3
    [31] S. Thevanayagam and T. Rishindran. Injection of nutrients and teas in clayey soils using electrokinetics. Geotechnical and geoenvironmental engineering.ASSE. 1998, 124(4):330-338
    [32] Acar, Y b., Harried, J., Alshawabkeh et al. Removal of Cd from saturated kaolmite by application of an electrical current. Geotechnique. 1994, 44(2):239-254
    [33] Reddy, K. R., Parupudi, U. S. and Devulapalli, S. N. et al. Effects of soilcomposition on removal of chromium by electrokinetics. Haz. Mat. 1997, 55:135-138
    [34] Weng, C. H., Taiyama, L. R., and Huang, C. P. Electro-osmosis for the in-situ treatment of chromium-contaminated soil. Hazardous Industrial Wastes. 1994, 26:496-505
    [35] Eykholt, G. R. Development of pore pressure by nonuniform electroosmosis in clays. Haz. Mat. 1997, 55: 171—186.
    [36] Hamed, J., Acar, Y B., and Gale, R. J. Pb(□)removal from kaolinite by electrokinetics. Geotech. Eng. 1991, 117(2): 241-271
    [37] West, L. J., Stewart, D. I. Effect of zeta potential on soil electrokinesis. Geoenvironment 2000, ASCE, Geotechnical Special Publication. 1995,46(2): 1535-1549
    [38] Menon, E. M., Hsu, C., and Yeung, A. T. Experimental and modeling studies on electro-kinetic extraction of lead from Georgia kaolinite. Environment Geotechnics.1996, Vol. 2. M. Kamon, ed., Balkema, Rotterdam. 1039-1044
    [39] Hicks, R. E., and Tondorf, S. Electroremediation of metal contaminated soils. Environ. Sci. Technol. 1994, 28(12): 2203-22 10
    [40] Shapiro, A. P., and Probstem, R. F. Removal of contaminants from saturated clay by electroosmosis. Environ. Sci. Technol. 1993, 27(2): 283-291
    [41] Lageman, R., Pool, W, and Seffiga, G. Electro-remediation: Theory and practice.Chem. Ind. 1989, 18:585-590
    [42] Mitchell, J. K., and Yeung, A. T. Electro-kinetic flow barriers in compacted clay. Transp. Res. Rec. 1991, 1288,1-9
    [43] Laursen, S. Laboratory investigation of electroosmosis in bentonites and natural clays. Can. Geotech. 1997, 34:664-671
    [44] Ho, S. V, and Shapiro, A. P. Scale-up aspects of Lasagna(TM) processs for in situ soil decontamination. Haz. Mat. 1997, 55:39-60
    [45] Grundl, T., and Reese, C. Laboratory study of electrokinetic effects in complex natural sediments. Haz. Mat. 1997, 55:187-201
    [46] West, L. J., Stewart, D. I., and Shaw, B. Resistivity imaging of electrokinetic transport in soil. Geoenvironmental Engineering. 1997, 564-574
    [47] 尚爱安,党志,梁重山.土壤/沉积物中微量重金属的化学萃取方法研究进展.农业环境保护.2001,20(4):266—269
    [48] Grland J. Zagury, Yves Dartiguenave and Jean-Claude Setier. Ex situ electroreclamation of heavy mentals contaminated sluge: Pilot scale study. Environ. Engrg. ASCE. 1999,125(10): 972-978
    [49] Alshawabkeh, A. N., Yeung, A. T., and Bricka, M. R. Pracitical aspects of in-situ electrokinetic extration. Environ. Eng. 1999, 125(1): 27-35
    [50] Li Z. H., Y. U. J, W., Neretnieks I. Electroremediation:Removal of heavy metals from soils by using cation—selective membrane. Environ. Sci. Technol.,1998,32:394~397
    [51] Mattson E. D., Lindgren E. R. Electrokinetic Extraction of Chromate from Unsaturated Soils. American Chemical Society, 1995. 11~20
    [52] J urate V., Mika S., Petri L. Electrokinetic soil remediation critical overview. The Science of the Total Environment, 2002, 289:0 97~121
    [53] Acar, Y.B.,Rabbi, M. F., Ozsu, E. E. Electrokinetic injection of ammonium and sulfate ions into sand and kaolinite beds. Geomechanics Abstracts, 1997, 4:218~219
    [54] RabbiM. F., ClarkB., Gale R., et al. In situ TCE bioremediation study using electrokinetic cometabolite injection. Waste Management, 2000,20:279~286
    [55] Ho S. V., Athmer C. J., Sherdan P. W., Shapiro A. P. Scale2up aspects of the LasagnaTM process for in situ soil decontamination. Journal of Hazardous Materials, 1997,55:39~60
    [56] Reddy K., Donahue M., Sasaoka R. Preliminary assessment of electrokintic remediation of soil and sludge contaminated with mixed waste. Air, Waste Manage.Assoc., 1999,49:823~830
    [57] 朱娜,董铁有 影响土壤电动力学修复技术的主要因素[J].江苏环境科技18(3):33-35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700