用户名: 密码: 验证码:
新型低造价高性能PDC钻头浸渍合金的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为石油钻井所用的聚晶金刚石钻头切削刃(以下简称PDC)所采用的超硬PDC,其使用寿命、抗剪切能力、抗耐磨性能,均取决于浸渍合金性能的优劣程度。铜合金由于具有良好的润湿性和优异的机械性能以及耐腐蚀性而获得了广泛应用。目前所使用的浸渍合金大多数为Cu-Ni-Mn合金。这种材料的成本高,抗拉强度较低,流动性差,熔点高。因此,研制高强度高耐磨的新型低造价高性能PDC钻头浸渍合金成为钻井工业生产有待解决的问题。
     在此背景下,采用铸造法工艺制备出Cu-Ni-Sn-Mn-Fe系列浸渍合金以及用无压浸渍工艺制备WCp/铜合金基体系列复合材料,并利用金相观察、SEM、TEM、能谱分析及磨损率、硬度的测量等方法,研究了Cu-Ni-Sn-Mn-Fe系列浸渍合金和WC_p/Cu-Ni-Sn-Mn-Fe系列复合材料的组织和性能的影响。研究发现:
     (1) Cu-Ni-Sn-Mn-Fe系列浸渍合金的铸态组织为明显的树枝晶组织:枝晶内是Cu、Ni原子富集的α相,枝晶间为溶质原子Sn富集的{Cu, Sn}固溶体。几种铜合金都存在较严重的Sn元素的枝晶偏析,必须经行适当的均匀化处理,消除树枝晶偏析,方可进行热态和冷态的压力加工。
     (2)加入Fe元素后Cu-Ni-Sn-Mn合金的机械性能均有所提高。添加Fe元素可以起到组织细化和晶粒细化的效果,同时添加Fe的数量应该有所限制,在适宜范围内它可以发挥改善合金组织,提高合金性能的作用,但是过高的Fe含量(如5%Fe),反而会产生一些负面影响。
     (3) 400℃时效5小时后A5浸渍合金中α-Cu相显著增多,其它峰的强度基本不变。其抗拉强度和硬度比铸态合金有所提高,而其延伸率和塑性较低。
     (4)在WC_p/Cu-Ni-Sn-Mn-Fe系列复合材料中,骨架材料WC几乎完全能被Cu液所浸润并能与铜合金基体很好的结合,W元素和铜合金中的元素在基体中产生互扩散,形成Fe_3W_3C复式碳化物和Cu_(0.4)W_(0.6)化合物,且两者之间产生轻微的界面反应。
     (5) WC颗粒是PDC钻头复合材料中主要的耐磨相,同时由于铜基体合金的高强度与高韧性形成了对颗粒的有力支撑。因此几种基体成分不同的WC_p/Cu-Ni-Sn-Mn-Fe复合材料具有良好的耐磨性能。WC_p/Cu合金复合材料中铜合金基体的磨损形貌呈现塑性变形、粘着、脆性剥落及犁削等特征。WC颗粒的磨粒磨损失效机制主要是微观切削和脆性剥落。
As polycrystalline diamond cutter (PDC) well bit, its service life, shearing resistance and abrasive resistance depend on its maceration alloy’s quality. Copper alloys have been the most widely used for maceration alloy of PDC well bit, because of its excellent wetting property, mechanical properties and corrosion resistance. Currently, Cu-Ni-Mn maceration alloys are widely used, but this kind of alloy has high cost, low tensile-strength, low fluidity property and high melting point. Therefore, the research on maceration alloy of PDC well bits is done by forcing on new type and low price copper alloys.
     Based on this background, casting processing was adopted to prepare series of Cu-Ni-Sn-Mn-Fe alloys and pressureless infiltration technology was adopted to prepare series of WCp/Copper alloy matrix materials. In this dissertation, by means of metalloscopy, SEM, TEM, energy spectrum and the measurement of wear and hardness, the microstructure and properties of maceration alloys and composites are studied. It is found as follows:
     (1) The cast structures of all Cu-Ni-Sn-Mn-Fe maceration alloys have three zones: Treelike crystal is inner layer consisted of Cu-Ni solid solution with rich Cu and Ni. Outer layer of treelike crystal is {Cu, Sn} phase with rich Sn. These alloys exist serious Sn segregation in the as cast structure by macro-observation. If these alloys need to undergo cold-working and hot-working treatment, they must be heat treated in order to eliminate Sn segregation.
     (2) A little Fe added in Cu-Ni-Sn-Mn alloys made mechanical properties increase, because doped Fe refined the microstructure and the gain. However, when the Fe content reaches in some value (5% Fe), the action was not obvious.
     (3) After 400℃aging four hours, there are much moreα-Cu phase formed in A5 alloy. And its strength and hardness were stronger than that of casting alloy, but its elongation percentage and plasticity were lower than that of as cast alloy.
     (4) In WC_p/Cu-Ni-Sn-Mn-Fe composites, almost skeleton particles WC were able to be soaked by copper liquid, and had a strong interface bonding with copper matrix. At the same time, there were the interface solution and mass interdiffusion of Fe, Cu, W and C elements between part of WC particle and copper maceration alloy, and Fe_3W_3C compound and Cu_(0.4)W_(0.6) compound were formed.
     (5) WC particle were main wear resistant phase in matrix materials, because of the strong strength and malleability of copper matrix alloys. Therefore, series of matrix materials have excellent wear resistances. The wear loss of copper maceration alloys are mainly caused by plastic deformation、ploughing and spalling properties, and the wear loss of WC particle are mainly caused by micro-cutting and brittle micro-peeling.
引文
[1]张国定,赵昌正.金属基复合材料.上海:上海交通大学出版社,1996.7:1~19
    [2]王荣国,武卫莉,谷万里.复合材料概论.哈尔滨:哈尔滨工业出版社,1995.4:6~10
    [3]魏贞月.复合材料.北京:机械工业出版社,1997.5:33~35
    [4]车剑飞.复合材料及其工程应用.北京:机械工业出版社,2006.5:12~14
    [5]吴人洁.复合材料.天津:天津大学出版社,1987.4:1~6
    [6]张玉龙.先进复合材料制备手册.北京:机械工业出版社,2003.6:13~14
    [7]郝元恺.高性能复合材料学.北京:化学工业出版社,2004.2:3~7
    [8]曾汉民.高技术新材料博览.北京:中国科学技术出版社,1993.4:9~13
    [9]武金有.航空电子领域的金属基复合材料.航空制造工程,1993,11:24~25
    [10]高家诚,张廷楷.纤维增强金属基复合材料.四川有色金属,1989,(2):17~21
    [11]骆灼旋.铸造金属基复合材料及其应用前景.特种铸造及有色金属,1991,(6):36~38
    [12] Dauphin J,Dunn B D,Levadou F. Materials for Space Application. Metals and Materials,1991,(6):422~430
    [13] Rohatgi P. Cast Aluminum Matrix Composites for Automotive Application. Metals and Materials,1991(43):10~15
    [14]王镐.金属基复合材料应用前景广阔.稀有金属快报,2001(4):13~14
    [15]吴人洁.金属基复合材料的现状与展望.金属学报,1997,33(1):78~83
    [16]吴人洁.金属基复合材料的发展现状与应用前景.航空制造技术,2001 (3):19~21
    [17]张晓玲,胡奈赛,何家文.非连续纤维金属基复合材料研究进展.铸造,1997(10):37~40
    [18]周贤良,吴江晖,张建云,等.电子封装用金属基复合材料的研究现状.南昌航空工业学院学报,2001,15 (1):11~14
    [19]柯索斯基R.金属基复合材料述评.航空材料学报,1997,17 (3):2~8
    [20] Rajiv Asthana. An Empirical Correlation between contact Angles and Surface Tension in Some Ceramic-Metal Systems. Metal Trans,1994,(1A):225
    [21]马建平,傅丹鹰,邢绍美.金属基复合材料的理化行为和工程性.航天工艺,1999(6): 49~53
    [22]徐文娟,吴申庆,卫中山,等.短纤维增强铝基复合材料的热循环尺寸稳定性.特种铸造及有色合金,1999(5):5~10
    [23]张国定.金属基复合材料界面问题.材料研究学报,1997,11(6):649~657
    [24] Feest E A. Interfacial Phenomena in Metal-matrix Composites. Composites,1994,25(2):75~86
    [25] Norihisa,Izawa. Shear Strength at the Interface between Aluminum and Ceramics in ModelComposites Fabricated by Squeeze Casting. Metal Trans,1996,(A3):259
    [26] Sgowri. In situ Observation of Particle Melting in Supper Plastic Aluminum Alloy Composites at High Temperatures. Metal Trans,1995(A7):1904
    [27] Hideki,Sekine. Combined Microstructure Strength Analysis of SiCp/Al Metal Matrix Composites. Composites,1995(3):183
    [28]崔春翔,吴人洁,王浩伟.金属基复合材料界面特征与力学性能.宇航材料工艺,1997(1):1~6
    [29]梅志,顾明元,吴人洁.金属基复合材料界面表征及其进展.材料科学与工程,1996,14(3):1~5
    [30]王俊英,杨启志,林化春.金属基复合材料的进展、问题与前景展望.青岛建筑工程学院学报,1999,20(4):90~95
    [31]王军,严彪,徐政.金属基复合材料的发展和未来.上海有色金属,1999,20(4):188
    [32]欧阳柳章.外加颗粒增强金属基复合材料的现状及展望.中国铸造装备与技术,2000,(1):3~7
    [33]李俊,钱翰城,彭晓东.铸造金属基颗粒复合材料.机械,1996,23(3):44~46
    [34]张淑英,孟繁琴.颗粒增强金属基复合材料的研究进展.材料导报,1996,34(2):66~71
    [35] Li Q F,McCartney D G. A review of reinforcement distribution and its measurement in metal matrix composites. Journal of Materials Processing Technology,1994,23(41):23~24
    [36]权高峰,柴东朗.增强体种类及含量对金属基复合材料力学性能的影响.复合材料学报,1995,24(5):62~65
    [37]陈华辉,邓海金,李明,等.现代复合材料.北京:中国物资出版社,1998.3:12~14
    [38] Huda D,Baradie M A EI,Hashmi M S J. Metal-matrix composites. Manufacturing aspects, PartⅠ. Journal of Materials Processing Technology,1993,(37):123~126
    [39]朱正吼,陈其善.铸造SiC/钢基复合材料中粒子分布特点.热加工工艺,1995,(2):8~9
    [40]杨涛林,陈跃.颗粒增强金属基复合材料的研究进展.铸造技术,2006,27(8):871~873
    [41] Zhou X B,Dehosson J M.Reaction wetting of liquid metal on ceramic substrates. Acta Materials,1996,44(2):421~426
    [42] Sui X D,Luo C P. The fabrication and properties of particle reinforced cast metal matrix composites. Material Process Technology,1997,63:426
    [43] Weirauch D A Jr,Krafick W J. Metall Trans.A,1990,21A:1745
    [44]闻萩江.复合材料原理.武汉:武汉工业大学出版社,1998.
    [45]唐春安,傅宇方,朱万成.界面性质对颗粒增强复合材料破坏模式影响的数值模拟分析.复合材料学报,1999,16(4):112~118
    [46]吴树森.金属基复合材料凝固界面颗粒行为的研究进展.材料导报,1998,12(5):1~5
    [47] Fishman S G. Reaction Processing: Route for Controlling Composite Interfacial Behavior. Proc. of the Sixth Japan-U.S Conf. On Composite Materials,1992,22~24
    [48] Clyne T W,Mason J F. The Squeeze Infiltration Process for Fabrication of Metal-Matrix Composites. Advanced Structural Inorganic Composites, Proc. Of the Satellite Symposium 2 on Advanced Structural Inorganic Composites, of the 7th Int. Meeting on Modern Ceramics Tech,1990,27~30
    [49] Katzman H A. Fiber coatings for the Fabrication of Graphite-Reinforced Magnesium Composites. Journal of Materials Science,1987,22
    [50] Gupta V,Yuan J. Measurement and Control of interface Strength for Achieving Toughness in Composites. Developments in Ceramic and Metal-Matrix composites,Proc,of a symposium Sponsored by the Structural Materials Division of TMS,Held During the 1992 TMS Annual Meeting,1992,1~5
    [51]李力军,杨瑞林.新型铸造WC颗粒复合耐磨材料的研究.硬质合金,1998,15(4):208~212.
    [52]游兴河.WC在WC/钢基复合材料中的溶解行为.复合材料学报,1994,11(1):29~35
    [53]许大庆.铁基颗粒复合材料的组织与抗冲蚀性能.特种铸造及有色合金,1998,(6):8~10
    [54]许斌.改善碳化钨颗粒与高铬铸铁界面结合的效果与机理.热加工工艺,2002,(1):9~11
    [55]孙国雄.颗粒增强金属基复合材料的制备技术和界面反应与控制.特种铸造及有色合金,1998,(4):12~17
    [56]张景辉,贾均.铸铁基-碳化钨粒子表面复合层性能的研究.金属科学与工艺,1988,(4):66~73
    [57]崔国文.表面与界面.北京:清华大学出版社,1990,103~104
    [58] Weirauch D A Jr.,Krafick W J. The spreading kinetics of Ag-28Cu(L) on nickel(S) PartⅡ. Area of spread on surfaces plated with electrolytic Ni. Metall Trans,1990,21A:1745
    [59] Tong Y,Jasiuk I. Interfaces in Polymer、Ceramic and Metal Matrix Composites. Acta Metall,1998,757
    [60] Subra S, Mortensen A, Needleman A, et al. Fundamentals of Metal-Matrix composites. Butterworth-Heinemann,1992:42~58
    [61]张晓玲,崔建军.非连续纤维增强金属基复合材料研究进展.铸造,1997(10):36~39
    [62]惠希东,王执福,孙本茂,等.颗粒TiC增强铸造Fe-Cr-Ni基复合材料的贮备工艺和显微组织.铸造,1996(11)
    [63]吴人洁.复合材料的未来发展.北京:机械工程出版社,1994(2)
    [64]黄民建,驹灼旋.铸造颗粒增强金属基复合材料及其发展前景. 99年云南铸造年会论文,1999
    [65]朴东学.铸造金属基复合材料的现状及发展动向.铸造,2000(9)
    [66]王玉砚.复合材料的发展趋势.国外金属材料,1991(1)
    [67] Bergman A,Jarfos A L. In situ formation of carbide composites by liquid/solid reactions. Key Eng Mater,1993
    [68]吴锦波,杨全.铸造复合材料研究进展.铸造,1991(6):1~5
    [69]吴锦波,马晓春.铸造法制金属基复合材料研究进展.材料科学与工程,1996(6)
    [70]天津大学物理化学教研室.物理化学.北京:高等教育出版社,1995.164
    [71] Aghajanian M K,Rocazella M A. The fabrication of metal matrix composites by a pressureless infiltration technique. Journal of Materials Science,1991,26:447~454
    [72] Aghajanian M K,Burke J T. A new infiltration process for the fabrication of metal matrix composites. SAMPE Quarterly,1989,20(4):43~46
    [73] Srinivasa-rao B,Jayaram V. Pressureless infiltration of Al–Mg based alloys into Al2O3 preforms: mechanisms and phenomenology. Acta Materialia,2001,49:2373~2385
    [74] Nagendra N,Rao B S, Jayaram V. Microstructures and properties ofAl2O3/Al–AlN composites by pressureless infiltration of Al-alloys. Materials Science and Engineering,1999,A269:26~37
    [75]张少卿,崔岩.无压浸渗制备的SiC/Al复合材料的微观组织研究.材料工程,2000,10:3~6
    [76]张少卿,崔岩.碳化硅颗粒增强铝基复合材料的无压浸渗反应机理探讨.材料工程,2001,3:8~11
    [77] Luo Z P,Song Y G,Zhang S Q. A TEM study of the microstructure of SiCp/Al composite prepared by pressureless infiltration method. Scripta Materialia,2001,45:1183~1189
    [78] Lee K B,Sim H S. Reaction products of Al-Mg/B4C composite fabricated by pressureless infiltration technique. Materials Science and Engineering A,2001,302:227~234
    [79]李青,华文君,崔岩.无压浸渗法制备B4C/Al复合材料研究.材料工程,2003,4:17~20
    [80] Lee K B,Kwon H. Interfacial reactions in SiC/Al composite fabricated by pressureless infiltration. Scripta Materialia,1997,36(8):847~852
    [81]陈康华,包崇玺,刘红卫.金属/陶瓷润湿性(上).材料科学与工程,1997,3(15):6~10
    [82]陈康华,包崇玺,刘红卫.金属/陶瓷润湿性(下).材料科学与工程,1997,4(15):27~34
    [83]李天增.一种新的金刚石切削元件及其在钻头上的试验研究.石油矿场机械,1978,(5):2~6
    [84]李天增. PDC钻头上的一种新元件及其性能研究.石油勘探技术,1986,(2):1~7
    [85] Offenbacher L A. Development and Successful Use of STRATRPOX Blank Bits in Oil field Drilling Applications. GE Company,1981,5
    [86] Teff Wood. Thermally Stable Cutters Extend Application of Synthetic Diamond Bits to Hard Formations. Oil & Gas J.,1984,(2):133~138
    [87] Stoddard J,Cerkovil J. SPE/iADC,1985,13464
    [88]方啸虎.超硬材料科学与技术(上卷) .北京:中国建材工业出版社,1998.152
    [89]徐省盘.无压浸渍法的烧结理论.地质装备,2002,1(2):34~36
    [90]李天增,徐玉江. PDC钻头材料问题的一些分析研究. 1992,14:64~67
    [91]陈康华,包崇玺,刘红卫.金属/陶瓷润湿性研究的综述.材料导报,1997,11(2):1~4
    [92]江伯鸿.材料热力学.上海:上海交通大学出版社,1998.148
    [93] Schmarzkopl P. The Mechanism of Infiltration. Symposium on Powder. Metallurgy Special Report No.58,1956,153
    [94]李天增.一些铜合金浸焊性能的研究.西南石油学院学报,1993,15(2):95~101
    [95]张勤俭,曹风国,王先逵.聚晶金刚石的应用现状和发展趋势.金刚石与磨料磨具工程,2006,151(1):71~74
    [96] Mensa-Wilmot G. New PDC cutters improve drilling efficiency. Oil and Gas Journal,1997,95 (43):64,67~70
    [97] Ohno T,Karasawa H,Kobayashi H. Cost reduction of polycrystalline diamond compact bits through improved durability. Geothermics,2002,31:245~262.
    [98] Ohno T,Karasawa H,Kobayashi H. Durability improvement and manufacturing cost reduction of polycrystalline diamond compact bits for geothermal well drilling. Proceedings World Geothermal Congress,2000:2387~2392
    [99] Akaishi M.,Yamada S,Ueda F,et al. Synthesis of polycrystalline diamond compact with magnesium carbonate and its physical properties. Diamond and Related Materials,1996,5:2~7
    [100]王祖南.关于金刚石钻头胎体材料及其系列化问题的商议.探矿工程,1980(6):33~36
    [101] Karasawa H,Misawa S. Development of new PDC bits for drilling of geothermal wells. Part 1: laboratory testing. Journal of Energy Resources Technology,1992,114:323~331.
    [102]李荣久.陶瓷-金属基复合材料.北京:冶金工业出版社,2002.4
    [103]洛阳铜加工厂中心试验室金相组.铜及铜合金金相图谱.北京:冶金工业出版社,1983.109~110
    [104]林文松,李元元.颗粒强化钢铁基复合材料的研究现状与展望.粉末冶金工业,2001,11(5):25~29
    [105]蒋业华,周荣.渣浆泵用WC/铁基表面复合材料的研究.铸造,2002,51(3):170~172
    [106]蒋业华.颗粒体积分数对WC/铁基表面复合材料冲蚀磨损性能的影响.铸造,2002,51(7):428~430
    [107]任露泉,徐德生,邱小明,等.仿生非光滑耐磨复合层的研究.农业工程学报,2001,17(3):7~9
    [108] Liu Y,Yu B H,Wang Z B,et al. A Study on the Wear and Friction Behaviors of TiC/NiCr Cermets. Tribology,2000,20 (2):90~93
    [109]赵建国,龚学湘,俞玉平,等. Cu-15Ni-8Sn弹性合金的研究与应用.上海有色金属,1989,10(03):15~18
    [110] Plewes J T. Method for Producing Copper Based Spinodal Alloys. U.S.A Patent, No. 4260,432. 1981-04-07
    [111] Louzon T J. Tensile Property Improvements of Spinodal Cu-15Ni-8Sn by Two-Phase Heat Treatment. Transaction of the ASME,1982,104(7):234~240
    [112] Plewes J T. Method for Treating Copper-Nickel-Tin Alloy Compositions and Products. U.S.A Patent, No. 3937,638. 1976-02-10
    [113]张利衡.添加Fe对Cu-9Ni-6Sn合金组织与性能的影响.上海有色金属,2000,21(3):112~121
    [114]江伯鸿,魏庆,徐祖耀,等. Cu-12Ni-8Sn及Cu-15Ni-8Sn-0.2Nb Spinodal分解型弹性合金的研究.仪表材料,1989,20(5):257~264
    [115]张利衡.少量Mn对Cu-15Ni-8Sn合金时效硬化的影响.上海有色金属,1996,17(2): 62~67
    [116] Masamichi M,Yoshikiyo O. Effect of Si Addition on the Cellular Precipitation in a Cu-10Ni-8Sn Alloys. Materials Transactions,1990,31(11):968~974
    [117] Ray R K. Combined Recrystallization and Precipitation in a Cu-9Ni-6Sn Alloy. Metall Trans,1982,13A (3):565~573
    [118]久保圆健治.Cu-9Ni-6Sn合金的特性.伸铜技术研究会志,1983,22:173~181
    [119]美国铜发展协会.美国常用变形铜合金的成分、性能和用途. Metal Progress,1983,124 (1):36~42
    [120]胡赓祥,蔡珣.材料科学基础.上海:上海交通大学出版社,2001.269~273
    [121] Pearson W B A. Handbook of Lattice Spacings and Metals and Alloys. London: Pergamon Press,1958.
    [122]束德林.金属力学性能(第2版).北京:机械工业出版社,1999.37
    [123]崔约贤,王长利.金属断口分析.哈尔滨:哈尔滨工业大学出版社,1998.36
    [124] Plewes J T. Quaternary Spinodal Copper Alloys. U.S.A Patent,No. 4025,204.1977-10-04
    [125]江伯鸿. Spinodal分解合金及其应用.仪表材料,1983,14(3):165~171
    [126]周霞,鲍志勇.磨煤机用硬质颗粒复合合金材料的耐磨性.铸造,2002,51(10):605
    [127] Yong Z Z,Zhang J D. The effect interfacial modifying on the mechanical and wear properties of SiCP/Cu composites. Materials letters,2003,57:4583~4591
    [128]万怡灶,王玉林,成国祥,等. Al2O3/铜合金复合材料的磨损特性研究.材料工程,1997(11):6~9
    [129]王俊,孙宝德,周尧和,等.颗粒增强金属基复合材料的发展概况.铸造技术,1998(3):37~41
    [130]郭成,程羽,尚春阳,等. SiC颗粒增强铝合金基复合材料断裂与强化机理.复合材料学报,2001,18 (4):54~57
    [131] Tjong S C,Lau K C. Abrasive wear behavior of TiB2 particle-reinforced copper matrix composite. Materials Science and Engineering A282,2000:183~186
    [132]高彩桥,刘家浚.材料的粘着磨损与疲劳磨损.北京:机械工业出版社,1989.45
    [133] Ibrahim I A,Mohamed F A,Lavernia E J. Particulate reinforced Metal Matrix Composites, A Review. J Mater Sci.,1991(26):1137~1156
    [134]于春田.金属基复合材料.北京:冶金工业出版社,1995.15
    [135] Riahi A R,Alpas A T. The role of tribo-layers on the sliding wears behavior of graphitic aluminum matrix composites. Wear,2001,251:1396~1407
    [136] Alpas A T,Zhang J. Wear regimes and transitions in Al2O3 particulate reinforced aluminum alloy.Materials Science and Engineering,A161,1993,273~284
    [137] Zhang J,Alpas A T. Transition between mild and severe wear in aluminum alloys. Acta mater,1997,45:513~528
    [138] Keshavam. Hard facing for milled tooth rock bits. United States Patent.,4.836.307.1989-06-06
    [139]硬质材料工具技术进展翻译组.在松散硬质磨料中的WC-Co合金的磨蚀.硬质材料工具技术进展,北京:冶金工业出版社,1982.159~169
    [140] GM.硬质材料工具技术进展翻译组.天井钻机钻头上的硬质合金镶齿的磨耗.硬质材料工具技术进展,北京:冶金工业出版社:1982.179~191
    [141] Alpas A T,Embury J D. Wear mechanism in particulate reinforced metal matrix composites. Proc. Conf. Wear Matterals,New York:ASME,1991.159~166
    [142]陈献廷.硬质合金使用手册.北京:冶金工业出版社,1986.45
    [143]材料耐磨抗蚀及其表面技术丛书编委会.材料的冲蚀磨损与微动磨损.北京:机械工业出版社,1987.37
    [144]林晓粤,董允.复合材料的磨粒磨损特性的力学分析.河北工业大学学报,1998,27(3):99~106

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700