用户名: 密码: 验证码:
西藏南部特提斯喜马拉雅白垩系沉积特征及其与油气资源潜力关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白垩纪C-T(Cenomanian-Turonian)界线大洋缺氧事件(OAE2)及其所形成的黑色页岩的成因是国际上的热点问题,藏南地区记录了此次事件。本文根据藏南岗巴、定日和江孜地区四条经典剖面的沉积学和有机地球化学研究表明,浅海陆棚相的岗巴地区冷青热组和察且拉组黑色页岩、浅黑色钙质页岩,碳酸盐缓坡相的定日地区岗巴东山组黑色页岩以及下斜坡相的江孜加不拉组黑色页岩有机碳含量一般大于0.8%,少数最高可超过2%。生油母质来源主要是以海相浮游生物和菌藻类为主,生烃潜力一般,但黑色页岩的有机碳含量要比西特提斯明显偏低。有机碳堆积速率AR-org和碳酸钙堆积速率AR-CaCO3的研究表明,在岗巴地区二者变化基本相同,而且基本上都在C-T界线时达到最大值,而江孜地区的不一致则可能是由于增加的AR-CaCO3稀释了有机质组分。据此计算了岗巴、定日地区C-T界线时沉积物的古生产力为77.96gC /m2·a和11gC /m2·a,明显偏低,这与碳同位素正偏、高沉积速率和可能的上升洋流所反映的高古生产力不符;通过碳酸钙堆积速率与古生产力之间的转换函数,得到江孜地区的C-T界线黑色页岩的古生产力在加不拉和床得剖面分别为46.0 gC /m2·a和17.3 gC /m2·a。由于该地区曾发生过大洋缺氧事件,这种缺氧滞留环境(“黑海模式”)的存在也极有可能存在早期形成富有机碳的黑色页岩。有机碳与沉积速率关系图解也反映了C-T界线时,藏南地区都应存在着高有机碳的沉积物。通过不同沉积环境下古生产力、沉积速率、岩性和有机质显微组分等特征的分析,表明高古生产力、高沉积速率和细粒沉积物更易形成富有机碳沉积,而陆棚、斜坡和盆地相的干酪根有更好的生油潜力。
The transition of late Cenomanian to early Turonian is characterized by a well known Oceanic Anoxic Events (OAE2) associated with widespread bituminous black shales. The cause of enrichment of organic carbon in the black shales has been under vigorous discussion. The Cenomanian-Turonian black shales, which were regarded as the sediments of OAE2, were found in Gangba, Tingri, and Gyangze areas in southern Tibet. A combined research from 4 well documented sections sedimentary and organic geochemistry in these areas indicates that black shale and darkish calcareous shale of Lengqingre Formation depositioned on shallow shelf at Gamba, black shale of Gangbadongshan Formation depositioned on carbonate ramp at Tingri and black shale of Gyabula Formation depositioned on lower slope at Gyangze provide moderate source rock potential which is characterized by an average TOC more than 0.8%, only some more than 2%, and is originated from marine plankton, bacteria and algea. However, the TOC value of the black shale is apparently lower than those in the western Tethys. The plots of mass accumulation rates of TOC and calcic carbonate present a same trend as a certain section at Gamba, and reach their maximum value at C-T boundary (CTB) ,but show a different trend in Gyangze possibly due to increased carbonate mass accumulation rate has diluted the organic matter content . We calculated the paleoproductivity of sediments during CTB based on the mass accumulation rates, an average values 77.96gC /m2·a and 11gC /m2·a at Gamba and Tingri respectively, which is disagree with the result come out from positive excursion ofδ13 C ,high sedimentation rate and possible upwelling. It certainly be the result of weathering. The paleoproductivity of CTB black shale shows average values of 46.0 gC /m2·a and 17.3 gC /m2·a from Gyabula section and Chuangde section respectively based on a transfer function between carbonate mass accumulation rates and paleoproductivity which is suit for open ocean environments. It also likely resulted in organic-rich black shale deposition during the CTB for its restricted deep-water circulation just like Black Sea. Moreover, the correlation between TOC and sedimentation rate may be used as a paleoenvironmental indicator, indicates that organic carbon-rich sediments should be deposited and the source rock potential of black shale should be much more than expected in southern Tibet. Detailed analysis on paleoproductivity, sedimentation rate, lithology and compositon of organic matter in the different depositional environment indicated that high paleoproductivity, high sedimentation rate and fine-grained sediments is more likely to organic carbon-rich sediments, and kerogen deposited at shelf, slope and abyssal basin has a good oil source rock potential.
引文
1. Arthur M A, Sageman B B. Marine black shales: depositional mechanisms and environments of ancient deposits. Annual Review of Earth Planetary Science , 1994,22 : 499~551.
    2. Arthur M A, Dean W E, Pratt L M. Geochemical and climatic effects of increased marine organic carbon. Nature, 1988, 315: 216-218.
    3. Barbola J M , Raynaud D , Korotkevichys Y S , et al . Vostok ice core provides 160000-year record of atmospheric CO2 . Nature , 1987 , 329 : 408-414.
    4. Baudin F. Depositional controls on Mesozoic source rocks in the Tethys. In: Huc A.-Y. eds, Paleogeography, Paleoclimate, and Source Rocks. AAPG Studies in Geology 40, 1995,191-211
    5. Beach D K and Schumacher A. Stanley Field, North Dakota-a new model for a new exploration play, in Chtistopher J E and Kaldi J. eds, Fourth International Williston Basin Symposium, 1982, 235-243
    6. Betzer P R ,Showers W J , Laws E A ,et al. Primary productivity and particle fluxes on a transect of the equator at 153°W in the Pacific Ocean [J ] . Deep Sea Research, 1984 ,31 : 1-11.
    7. Bonn WJ ,Gingele F X ,Grobe H ,et al. Palaeoproductivity at the Antarctic continental margin : opal and barium records for the last 400 ka. Palaeogeography , Palaeoclimatology , Palaeoecology , 1998 ,139 :195-211.
    8. Bralower T J and Thierstein H R. Organic carbon and metal accumulation in Holocene and mid-Cretaceous marine sediments: Paleoceanographic significance, In: Brooks J and Fleet A, eds, Marine Petroleum Source Rocks: Oxford, England, Blackwell Scientific Publications,1984a
    9. Bralower T J , Thierstein H R. Low productivity and slow deep water circulation in mid-Cretaceous oceans. Geology , 1984b , 12 : 614-618.
    10. Bralower T. J. and H. R. Thierstein .Organic-carbon and metal accumulation in Holocene and Mid-Cretaceous marine sediments; palaeoceanographic significance , in Marine petroleum source rocks, Geological Society Special Publications ,1987, 26: 345-369
    11. Bralower T J, Arthur M A, Leckie RM, et al. Timing and paleoceanography of oceanic dysoxia / anoxic in the late Barremian to Early Aptian. Palaios,1994, 9: 335-369.
    12. Brassell S C, Eglinton C, Maxwell J R, et al. Natural background of alkanes in the aquatic environment. In: Hutzinger O et al. eds. Aquatic Pollutanta: Transformation and Biological Effects.Oxford: Pergamon Press, 1978, 69-86
    13. Brummer J A , van Eijden A J M.“Blue-ocean”paleoproductivity estimates from pelagic carbonate mass accumulation rates. vander Zwaan G J . Approaches to Paleoproductivity Reconstructions . Marine Micropaleontology , 1992 , 19 : 99-117.
    14. Calvert S E, J S Vogel and J R Southon. Carbon accumulation rates and the origin of the Holocene sapropel in the Black Sea, Geology, 1987, 26:918-921
    15. Calvert S E and R E Karlin. Organic carbon accumulation in the Holocene sapropel of the Black Sea. Geology, 1998, 26(2): 107-110
    16. Clark RC and Blumer M. Distribution of n-paraffins in marine organisms and sediment. Liminology and Oceanpgraphy, 1967, 12(12): 79-87
    17. Demaison G J and G T Moore. Anoxic environments and oil source bed genesis. AAPG Bulletin, 1980, 64(8):1179-1209
    18. Erba E. Calcareous nannofossils and Mesozoic oceanic events. Marine Micropaleontology, 2004, 52 : 85~106.
    19. Farrimond P, Eglinton G, Brassell S C, et al. The Cenomanian-Turonian anoxic event in Europe: An organic geochemical study .Marine Petroleum Geology, 1990, 7:75-89
    20. F?llmi K B. 160 m. y. record of marine sedimentary phosphorus burial : Coupling of climate and continental weathering under greenhouse and icehouse conditions. Geology , 1995, 23 (6) : 859-862.
    21. F?llmi K B. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits . Earth Science Reviews , 1996 , 40 : 55-124.
    22. Froelich P N , Malone P N , Hodell D A , et al . Biogenic opal and carbonate accumulation rates in the Subarctic South Atlantic : The late Neogene of Meteor Rise Site 704. Ciesislski P F. Proceedings of ODP Scientific Results. 1991, 14: 515-526.
    23. Garzanti E., Nicora A., Rettori R.. Permo-Triassic boundary and Lower to Middle Triassic in South Tibet. Journal of Asian Earth Sciences, 1998a , 16: 143-157.
    24. Garzanti E., Angiolini L., Brunton H., Sciunnach D, Balini M. The Bashkirian "Fenestella shales" and the Moscovian “Chaetetid shales” of the Tethys Himalaya (South Tibet, Nepal and India). Journal of Asian Earth Sciences, 1998b, 16: 119-141.
    25. Goldhammer R K. Compaction and decompaction algorithms for sedimentary carbonates. Jounal of Sedimentary Research, 1997, 67(1): 26-35
    26. Grantham P J, Posthumal J and DeGroot K. Variation and significance of the C27 and C28 triterpane contents of a North Sea core and arious North Sea crude oils. In: Douglas A G, Maxwell J R eds. Advances in Organic Geochemistry, New York: Pergamon Press, 1979 29-38
    27. Haas H de, Tjeerd C E, van Weering. Recent sediment accumulation, organic carbon burial and transport in the northeastern North Sea. Marine Geology, 1997, 136, 173-187
    28. Hauck M. L, K. D. Nelson, L. D. Brown, et al. Crustal structure of the Himalayan Orogen at approximately 90 degrees east longitude from Project INDEPTH deep reflection profiles Tectonics ,1998, 17(4):481-500
    29. Hay W W. Paleoceanography of marine organic carbon-rich sediments. In: Huc A.-Y. eds, Paleogeography, Paleoclimate, and Source Rocks. AAPG Studies in Geology 40, 1995, 21-60
    30. Heath G. R., T. C. Moore, and J. P. Dauphin. Organic carbon in deep-sea sediments .in The fate of fossil fuel CO2 in the oceans, Plenum Press, New York, N.Y., United States ,1977, 605-625
    31. Herbin, J.P., Montadet, L., Müller et al. Organic-rich sedimentation at the Cenomanian– Turonian boundary in oceanic and coastal basins in the North Atlantic and Tethys. In: in North Atlantic palaeoceanography, Geological Society Special Publications , 1986, 21: 389-422
    32. Hetényi M, Alice B-W, Csanád S, et al. Variations in organic geochemistry and lithology of a carbonate sequence deposited in a backplatform basin(Triassic ,Hungary). Organic Geochemistry, 2002, 33,1571-1591
    33. Holbourne A , Kuhnt W, Sodeing E. Atlantic paleobathymetry , paleoprodoctivity and paleocirculation in the late Albian : The benthic foraminiferal record. Paleogeography ,Paleoclimate , Paleoecology , 2001 , 170 : 171-196.
    34. Hu Xiumian, Luba Jansa, Chengshan Wang, et al. Upper Cretaceous oceanic red beds ( CORBs) in the Tethys: Occurrences, lithofacies, age and environments. Cretaceous Research, 2005, 26: 3-20.
    35. Hu Xiumian, Luba Jansa, Chengshan Wang. Upper Jurassic-Lower Cretaceous stratigraphy in south-eastern Tibet: a comparison with the western Himalayas. Cretaceous Research, 2008, 29: 301-305
    36. Huang WY and Meinschein WG. Sterols in sediment from Baffin Bay, Texas Geochimica et Cosmochimica Acta , 1978, 42(9):1391-1396
    37. Ibach L E. J. Relationship between sedimentation rate and total organic carbon content in ancient marine sediments. AAPG Bulletin, 1982, 66: 170 - 188.
    38. Irving E, F. K. North, and R.Couillard .Oil, Climate, and Tectonics. Canadian Journal of Earth Sciences, 1974, 11(1):1-17
    39. Jadoul F., Berra F., Garzanti E. The Tethys Himalayan passive margin from Late Triassic to Early Cretaceous (South Tibet). Journal of Asian Earth Sciences, 1998, 16: 173-194.
    40. Jenkyns H C. Cretaceous anoxic events: From continents to oceans. Journal of the Geological Society London, 1980, 137:171-188.
    41. Jenkyns H C , Gale A S , Corfield R M. Carbon and oxygen isotope stratigraphy of the English Chalk and Italian Scaglia and its paleoclimatic significance. Geological Magazine, 1994, 131 : 1 -34.
    42. Jones C E, Jenkyns H C. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous . American Journal of Science, 2001,
    301: 112-149.
    43. Klemme, H. D., Ulmishek, G. F.. Effect petroleum rocks of the world: stratigraphic distribution and controlling depositional factors. AAPG Bull., 1991, 75: 667-689.
    44. Klemme H. D.Petroleum systems of the world involving Upper Jurassic source rocks ,in The petroleum system; from source to trap, AAPG Memoir60,1994, 51-72
    45. Kuhnt W, Nederbragt A J , Leine L. Cyclicity of Cenomanian-Turonian organic carbon-rich sediment s in the Tarfaya Atlantic Coastal Basin , Morocco. Cretaceous Research, 1997, 18 : 587-601.
    46. Langrock U. and R. Stein. Origin of marine petroleum source rocks from the Late Jurassic to Early Cretaceous Norwegian Greenland Seaway; evidence for stagnation and upwelling Marine and Petroleum Geology, 2004, 21(2):157-176
    47. Larson R L. Latest pulse of Earth: Evidence for a mid Cretaceous super plume . Geology, 1991, 19: 963-966.
    48. Leckie R M, Bralower T J, Cashman R. Oceanic anoxic events and plankon evolution: Biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography, 2002, 17(3 ):10.
    49. Leine, L. Geology of the Tarfaya oil shale deposit, Morocco. Geol. Mijnb. 1986, 65, 57– 74.
    50. Li Xianghui, Chengshan Wang, Xiumian Hu. Stratigraphy of deep–water Cretaceous deposits in Gyangze, southern Tibet, China. Cretaceous Research, 2005, 26: 33-41
    51. Li Xianghui, Hugh C.Jenkyns, Chengshan Wang et al.Upper Cretaceous carbon-and oxygen-isotope stratigraphy of hemipelagic carbonate facies from southern Tibet, China. Journal of the Geological Society, London, 2006, 163:375-382
    52. Liu Guanghua. Permian to Eocene sediments and Indian passive margin evolution in theTibetan Himalayas. Tuebinger Geowissenschaft liche Arbeiten. Reihe A. Nummer, 1992 13, 268
    53. Liu G., Einsele G. Sedimentary history of the Tethyan basin in the Tibetan Himalayas. Geol. Rundsch, 1994, 83: 32-61
    54. Lüning S, S Kolonic, E M Belhadj, et al. Integrated depositional model for the Cenomanian-Turonian organic rich strata in North Afirica. Earth-Science Reviews, 2004, 64, 51-117
    55. Lyons T W, Werne J P , Hollander D J , et al . Contrasting sulfur geochemistry and Fe/ Al and Mo/ Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin ,Venezuela . Chemical Geology, 2003 , 195 : 131-157.
    56. MacManus J , Berelson W M , Klinkhammer G P , et al . Geochemistry of barium in marine sediments : Implications for its use as a paleoproxy. Geochimica et Cosmochimica Acta , 1998 , 62 (21-22) : 3453-3473.
    57. Mayer L M. Surface area control of organic carbon accumulation in continental shelf sediments. Geochimica et Cosmochimica Acta, 1994, 58(4):1271-1284
    58. Mello M R, Koutsoukos E A M, Hart M B. Late Cretaceous anoxic events in the Brazilian continental margin. Organinc Geochemistry, 1989, 14(5):529-542
    59. Meyers S R , Sageman B B , Hinnov L A. Integrated quantitative stratigraphy of the Cenomanian-Turonian Bridge Creek Limestone Member using evolutive harmonic analysis and stratigraphic modeling. Journal of Sedimentary Research, 2001, 71:628-644.
    60. Muller P J , Suess E. Productivity , sedimentation rate and sedimentary organic matter in the oceans. Organic carbon preservation. Deep Sea Research, 1979, 26A : 1347 -1362.
    61. Omura Akiko and Koichi Hoyanagi. Relationships between composition of organic matter, depositonal environments, and sea-level changes in backarc basins, central Japan. Journal of Sedimentary Research, 2004, 74(5):620-630
    62. Parrish J T. Upwelling and petroleum source beds, with reference to the Paleozoic:AAPG Bulletin,1982, 66, 750-774
    63. Parrish J T. Paleo-upwelling and the distribution of organic-rich rocks, in J.Brooks and A. j. Fleet, eds., Marine petroleum source rocks, Geological Society Special Publications ,1987, 26:199-205
    64. Parrish J T. Climate of the supercontinent Pangea. The Journal of Geology, 1993, 101: 215-233
    65. Parrish J T. Paleogeography of organic carbon-rich rocks and the preservation verses production controversy. In: Huc A.-Y. eds, Paleogeography, Paleoclimate, and Source Rocks. AAPG Studies in Geology 40, 1995,1-20
    66. Peters K E. and J. Michael Moldowan. The biomarker guide; interpreting molecular fossils in petroleum and ancient sediments .Prentice Hall, Englewood Cliffs, NJ, United States, 1993, 1-363
    67. Peter W Skeleton, Robert A Spicer, Simon P Kelley, et al. The Cretaceous World.Cambridge: Cambridge University Press, 2003: 360.
    68. Pfeifer K, Kasten S , Christian H , et al . Reconstruction of primary productivity from the barium contents in surface sediment s of South Atlantic Ocean . Marine Geology , 2001 , 177 : 13-24.
    69. Pinet, P. R.. Oceanography. St Paul, MN: West Publication, 1992, 571
    70. Prokoph A , Villeneuve M , Agterberg F P , et al. Geochronology and calibration of global Milankovitch cyclicity at t he Cenomanian-Turonian boundary. Geology, 2001, 29 : 523-526.
    71. Raynaud D , Barbola J M, Chappellaz J M , et al . Glacial interglacial evolution of greenhouse gases as inferred from ice core analysis :A review of recent results .Quaternary Science Review , 1992 , 11 : 381-386.
    72. Rea D K., Nicklas G. Pisias and Teresa Newberry. Late Pleistocene paleoclimatology of the central Equatorial Pacific; flux patterns of biogenic sediments Paleoceanography, 1991, 6(2):227-244
    73. Sarnthein M ,Winn K, Duplessy J C ,et al. Global variations of surface ocean productivity in low and mid latitudes :influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21000 years. Paleoceanography, 1988 , 3(3) :361-399.
    74. Schlanger S O, Jenkyns H C. Cretaceous oceanic anoxic events:Cause and consequence . Geologie en Mijinbouw, 1976, 55:179-184.
    75. Schlanger S O , Arthur M A , Jenkyns H C , Scholle P A. The Cenomanian-Turonian oceanic anoxic event , I. stratigraphy and distribution of organic carbon-rich beds and the marine δ13 C excursion. In : Brooks J , Fleet A J , eds. Marine petroleum source rocks. Geological Society Special Publication, 1987, 26 : 371-399.
    76. Scholle P A and Halley R B. Burial diagenesis: out of sight, out of mind, in Schneidermann N and Harris P M, eds, Crabonate Cements:SEPM, Spercial Publication, 1985, 36, 303-328
    77. Siesser W G. Paleoproductivity of the Indian Ocean during the Tertiary Period. Global and Planetary Change , 1995, 11(1-2):71-88
    78. Stein R. Organic carbon and sedimentation rate-further evidence for anoxic deep-water conditions in the cenomanian/Turonian Atlantic Ocean. Marine Geology, 1986, 72, 199-209
    79. Stein R. Surface water paleo-productivity as inferred from sediments deposited in oxic and anoxic deepwater [A] . in Degens E T ,Meyers P A and Brasseli S C eds. Biogeochemistry of Black Shales. Hamburg: Selbstverlag Universitat Hamburg , 1986. 55-70.
    80. Stein R. Organic carbon content /sedimentation rate relationshio and its paleoenvironmental significance for marine sediments. Geo-Matine Letters, 1990, 10:37-44
    81. Stein, R. Accumulation of organic carbon in marine sediments. In S.Bhattacharji, et al. eds, Lecture notes in earth sciences, Berlin: Springer. 1991, 34, 217
    82. Stoll H M , Schrag D P. Coccolith Sr/ Ca as a new indicator of coccolithophorid calcification and growth rate. Geochemistry Geophysics Geosystems , 2000 , 1 : 10-18.
    83. Suess E. Particulate organic carbon flux in the oceans surface productivity and oxygen utilization. Nature, 1980, 288 :260-263.
    84. Summerhayes, C.P., Shackleton, N.J. (Eds.), North American Palaeoceanography. Geological. Societiy, London, Special Publish., 1986, 21, 389-422.
    85. Tissot B., B. Durand, J. Espitalie, et al.Influence of Nature and Diagenesis of Organic Matter in Formation of Petroleum.AAPG Bulletin, 1974; 58: 499 - 506.
    86. Tissot B, G. J. Demaison, P. Masson. Paleoenvironment and petroleum potential of Mid-Cretaceous black shales in Atlantic basins. AAPG Bulletin, 1979, 63(3):542
    87. Tyson R V. Sedimentation rate, dilution, preservation and total organic carbon: some results of a modeling study. Organic Geochemistry, 2001, 33, 333-339
    88. Walliser O H. Global Events and Events Stratigraphy in the Phanerozoic . Berlin Heidelberg: Springerverlag, 1996:242-252.
    89. Wan Xiaoqiao. Albian-Campanian (Cretaceous) planktic foraminiferal stratigraphy in southern Xizang (Tibet). In: Yang Zunyi, eds., Stratigraphy and Paleontology of China, Geological Publishing House, Beijing.1991, 1: 165-181.
    90. Wan Xiaoqiao, P.B. Wignall, Wenjin Zhao. The Cenomanian-Turonian extinction and oceanic anoxic event: evidence from southern Tibet. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003a, 199:283-298
    91. Wan Xiaoqiao, Mingrui Wei, Guobiao Li. δ13C values from the Cenomanian-Turonian passage beds of southern Tibet. Journal of Asian Earth Sciences. 2003b, 21:861-866
    92. Wilde P , Quibby-Hunt M S , Lyons T W. Molybdenum as an indicator of original organic content in ancient anoxic sediments. Geological Society of American , Abstracts with Programs. 2001 , 33 (6) : 39.
    93. Wang Chengshan, Xia Daixiang, et al.. Field Trip Guide: T121/T387 Geology between the Indus-Yarlung Zangbo Suture Zone and the Himalaya Mountains (Xizang), China. Beijing: Geological Publishing House, 1996,1-72
    94. Wang C.S., Hu X.M., Jansa L., et al. The Cenomanian-Turonian oceanic anoxic event in southern Tibet. Cretaceous Research, 2001, 22: 481-490.
    95. Wang Chengshan , Xiumian Hu, Massimo Sarti, et al. Upper Cretaceous oceanic red beds in southern Tibet: A major change from anoxic to oxic, deep sea environments. Cretaceous Research, 2005, 26: 21-32.
    96. Willems H., Zhang B. Cretaceous and Lower Tertiary sediments of the Tibetan Tethys Himalaya in the area of Gamba (South Tibet, PR China). Ber FB Goewiss Univ Bremen, 1993a,38: 3-27.
    97. Willems H., Zhang B. Cretaceous and Lower Tertiary sediments of the Tibetan Tethys Himalaya in the area of Tingri(South Tibet, PR China). Ber FB Goewiss Univ Bremen, 1993b, 38: 28-47.
    98. Willems H. Sedimentary history of the Tibetan Tethys Himalaya continental shelf in South Tibet (Gamba, Tingri) during Upper Cretaceous and Lower Tertiary (Xizang Autonomous Region, PR China), Berichte, Fachbereich Geowissenschaften, Universitat Bremen, 1993, 38: 49-183.
    99. Willems H., Zhou Z., Zhang B., and Gr?fe K.U. Stratigraphy of the Upper Cretaceous and Lower Tertiary strata in the Tethyan Himalayas of Tibet (Tingri area, China). Geol. Rundsch, 1996, 85: 723-754.
    100. Yin an. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Science Reviews, 2006, 76, 1-131
    101. Zou Yanrong, Feng Kong, Ping’an Peng, et al. Organic geochemical characterization of Upper Cretaceous oxic oceanic sediments in Tibet, China: a preliminary study. Cretaceous Research, 2005, 26, 65-71
    102. 陈曦,王成善,胡修棉等.西藏南部江孜盆地上侏罗统至古近系岩石学特征及盆地演化.岩石学报,2008,待刊
    103. 苟宗海. 西藏白垩纪特提斯海的固着蛤类(RUDISTS). 沉积与特提斯地质, 1996,20: 150-159
    104. 国土资源部.全国油气资源战略选区调查与评价项目可行性报告(内部资料).2002,41-47
    105. 胡修棉,王成善,李祥辉,等. 西藏南部Cenomanian-Turonian缺氧事件:有机地球化学研究.地球化学,2000,29(5):417-424
    106. 胡修棉, 王成善, 李祥辉. 藏南海相白垩纪碳酸盐碳稳定同位素演化与古海洋溶解氧事件. 自然科学进展,2001,11: 721-728
    107. 胡修棉. 藏南白垩系沉积地质与上白垩统海相红层-大洋富氧事件:[博士论文].成都:成都理工大学,2002
    108. 胡修棉,王成善,李祥辉,等. 藏南上白垩统大洋红层:岩石类型、沉积环境与颜色成因. 中国科学(D辑),2006,36(9):811-821
    109. 胡修棉,王成善. 白垩纪大洋红层:特征、分布与成因.高校地质学报,2007,13(1):1-13
    110. 李建如,王汝建,李保华. 南海南部12 Ma 以来的蛋白石堆积速率与古生产力变化. 科学通报,2002 ,47(3):235-237.
    111. 李祥辉,王成善. 西藏特提斯喜马拉雅显生宇的超层序. 沉积与特提斯地质,1997,21,8-26
    112. 李祥辉, 王成善, 万晓樵,等. 西藏江孜县床得剖面侏罗-白垩纪的地层层系及地层系统考证. 地层学杂志, 1999,4: 303-309
    113. 李祥辉, 王成善, 胡修棉. 深海相中的砂质碎屑流沉积----以西藏特提斯喜马拉雅侏罗-白垩系为例. 矿物岩石, 2000,20(1):45-51
    114. 李祥辉,王成善,Hugh C Jenkyns,等. 西藏南部上白垩统高分辨率全岩碳同位素地层学. 地质论评,2006,52(3):304-313
    115. 刘桂芳. 西藏聂拉木古措晚侏罗世至早白垩世菊石群. 西藏古生物论文集. 北京: 地质出版社, 1988,1-65.
    116. 马宗晋,杜品仁,卢苗安. 地球的多圈层相互作用. 地学前缘,2001,8:3-8.
    117. 穆恩之, 尹集祥, 文世宣, 等. 中国西藏南部珠穆朗玛峰地区的地层. 中国科学, 1973,16(1): 59-71.
    118. 邱中建,方辉.对我国油气资源可持续发展的一些看法.石油学报,2005,26(2):1-5
    119. 陶然. 西藏南部中白垩世古海洋学研究[硕士学位论文], 成都: 成都地质学院. 1990.
    120. 陶然, 曾允孚, 王成善. 西藏南部中白垩世旋回地层学. 沉积学报, 1995,13(1): 18-26
    121. 万晓樵. 西藏岗巴地区白垩纪地层及有孔虫动物群. 青藏高原地质文集(16),北京: 地质出版社, 1985,203-228.
    122. 万晓樵. 西藏白垩纪浮游有孔虫化石带. 青藏高原地质文集(18). 北京: 地质出版社, 1987,116-121.
    123. 万晓樵,阴家润. 西藏岗巴白垩纪中期微体生物群与古海洋事件. 微体古生物学报, 1996,13(1):43-56
    124. 万晓樵,赵文金,李国彪. 对西藏岗巴上白垩统的新认识. 现代地质, 2000,14: 281-285.
    125. 万晓樵,刘文灿,李国彪,等.白垩纪黑色页岩与海水含氧量变化-以西藏南部为例. 中国地质,2003,30(1):36-47
    126. 王成善, 李祥辉, 万晓樵,等. 西藏南部江孜地区白垩系的厘定. 地质学报, 2000,74(1):97-107
    127. 王成善,伊海生,李勇,等.西藏羌塘盆地地质演化与油气远景评价.北京:地质出版社,2001,1-249
    128. 王成善,李祥辉,胡修棉,等.特提斯喜马拉雅沉积地质与大陆古海洋学.北京:地质出版社,2005,1-373
    129. 王成善,李亚林,李永铁.青藏高原油气资源远景评价问题.石油学报,2006,27(4):1-7
    130. 王乃文. 中国白垩纪特提斯地层学问题. 青藏高原地质文集(3) ,1983,148-180.
    131. 王汝建,李建如. 南海ODP1143 站第四纪高分辨率的蛋白石记录及其古生产力意义. 科学通报,2003 ,48(1):74 -77.
    132. 王义刚, 王玉净, 吴浩若. 西藏南部加不拉组问题的讨论及隆子地区下侏罗统的发现. 地质科学,1976,2: 150-156.
    133. 王义刚. 喜马拉雅地区(我国境内)地层研究的新认识. 地层学杂志,1980,4(1):55-59
    134. 文世宣. 珠穆朗玛峰地区的地层—白垩系. 见: 珠穆朗玛峰地区科学考察报告(1966-1968)--地质. 北京:科学出版社,1974:148-183
    135. 文世宣,章炳高,王义刚等. Sedimentary development and formation of stratigraphic region in Xizang. In: Proceedings of the Symposium on Qinghai Xizang (Tibet) Plateau. 北京:科学出版社,1980,119-130.
    136. 吴浩若, 王东安, 王连城. 西藏南部拉孜-江孜一带的白垩系. 地质科学,1977,3:250-261.
    137. 吴浩若. 西藏地层—特提斯喜马拉雅北部分区. 北京:科学出版社,1984,115-119.
    138. 吴浩若. 西藏南部江孜地区晚白垩世晚期及早第三纪地层?. 地层学杂志, 1987,11(2): 147-149.
    139. 西藏地质矿产局. 西藏自治区区域地质志. 北京:地质出版社,1993,1-200.
    140. 西藏地质矿产局. 西藏自治区岩石地层. 武汉:中国地质大学出版社,1997,183-184.
    141. 肖序常. 复原亿万年前的古海洋—读《寻觅失踪的特提斯海》有感《.科技日报》,2002, 1-4第5版.
    142. 徐钰林, 万晓樵, 苟宗海,等. 西藏侏罗纪, 白垩纪, 第三纪地层. 武汉: 中国地质大学出版社, 1990,147.
    143. 杨遵仪, 吴顺宝. 西藏南部晚侏罗世的若干箭石. 古生物学报, 1964, 12(2): 187-216
    144. 尹观,王成善.西藏南部中白垩世黑色页岩的碳氧同位素组成及大洋缺氧事件的讨论.矿物岩石,1998a,18(1):95-101
    145. 尹观,王成善.西藏南部中白垩世的锶、硫同位素组成及其古海洋地质意义. 沉积学报, 1998b,16(1):107-111
    146. 余光明,王成善, 张哨楠. 西藏特提斯中生代沉积盆地特征及演化. 中国科学(B辑),1989,(9):982-990
    147. 余光明和王成善.西藏特提斯沉积地质. 地质专报(三, 12). 北京: 地质出版社,1990,1-185.
    148. 张厚福,方朝亮,高先志,等. 石油地质学.北京:石油工业出版社.1999,1-338
    149. 赵文金,万晓樵. 西藏特提斯演化晚期生物古海洋事件.北京:地质出版社,2003:1-100
    150. 赵政璋,李永铁,叶和飞,等.青藏高原海相烃源层的油气生成.北京:科学出版社,2000,1-634
    151. 钟石兰,周志澄,H. Willems,等. 西藏南部岗巴地区白垩纪中期钙质超微化石带和Cenomanian-Turonian界线.古生物学报,2000,39(3):313-325

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700