用户名: 密码: 验证码:
脉冲电流退火的Co基非晶带巨磁阻抗效应电流传感器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非晶态合金是二十世纪中期发展起来的一种具有优良磁学性能的新型功能材料。1992年人们在非晶态合金丝中首次发现了巨磁阻抗(GMI)效应,目前世界各国学者都在积极开展新型GMI磁电传感器的研究工作。本文在非晶态合金带GMI效应的理论和实验研究基础上,设计了一种新颖的电流传感器,主要研究工作如下:
     对由不同化学成分所组成的非晶态合金的物理性能进行了分析,介绍了非晶带的磁畴结构模型,利用线性化Maxwell方程组及Landau-Lifshitz方程,推出在交变磁场及外加直流磁场作用下铁磁材料的与取向相关的磁导率表达式,得到对方位角平均的相对磁导率及阻抗计算公式等相关理论,从而揭示了GMI效应的产生原因及工作机理,并分析了磁畴结构、磁致伸缩、磁各向异性、工作温度对GMI效应的影响。选取成分为Co_(66.5)Fe_4(SiB)_(27)Mo_(2.5)的非晶带作为敏感材料样品;
     研究了脉冲电流退火对样品GMI效应的影响。实验分析了退火后样品的GMI效应与正弦驱动电流频率的变化关系,结果表明:在低频下最大阻抗变化率(GMI)_(max)随频率的升高而增大,当达到特征频率(f=1MHz)后又随频率的进一步升高而减小。在频率f=1MHz,幅值I_p=10mA时,(GMI)_(max)最大可达42.5%。
     用经脉冲电流退火后的非晶带GMI效应研制出一种可进行非接触式测量的电流传感器。设计了高频信号发生电路、功率放大电路对非晶带进行励磁,然后通过前置放大电路、峰值检波电路、低通滤波电路及差分放大电路对非晶带两端的输出电压进行信号处理,对传感器电路进行了参数优化设计,通过施加偏置电流调节GMI效应的线性区域,使该传感器在—0.15~0.15A的测量范围内精度为±0.81%FS;通过负反馈设计进一步提高了传感器的精度和测量范围,在—0.9~0.9A的测量范围内精度可达±0.62%FS,其可用于弱电流的检测领域。
Amorphous alloy as a new functional material with superior magnetic properties was developed in the mid-20th century. In 1992, people first found the giant magneto-impedance (GMI) effect in amorphous wires. Recently, many scholars in the world are researching on the GMI sensors actively. In this thesis, the theory and experiment of GMI effect were researched systematically. Based on the effect, a novel current sensor was developed utilizing amorphous ribbon. The main results are generalized as the followings:
     The preparative development of the amorphous alloy was introduced and the physical properties of amorphous alloy with different chemical constitutions were analyzed. Co-based amorphous alloy Co_(66.5)Fe_4 (SiB)_(27)M_(2.5) was selected as sensor sensitive material. The expressions of orientation-related relative permeability in amorphous alloy ribbon under applied driving ac current flowing through the ferromagnetic materials and dc external magnetic field was derived by simultaneously solving the Maxwell's equations and the Landau-Lifshitz equation of motion and establishing the magnetic domain structure model. The calculation formula of mean relative permeability averaging over 90 orientation angle and the magneto-impedance are obtained. The influence factors of GMI effect were analyzed.
     The GMI effect dependence on pulse current annealing and driving current were studied. The experimental results show that the maximum GMI ratio increases continuously with frequency of ac driving sine-wave current up to 42.7% at 1MHz with amplitude of 10mA and then decrease with the increasing frequency.
     A novel non-contact type current sensor utilizing GMI effect in amorphous ribbon was developed. A high frequency signal generator and a power amplifier were designed to excit the amorphous alloy ribbon. Then the output voltage of amorphous ribbon sample was pre-processed with amplifier, peak detector circuit, low pass filter and precision differential circuit. The parameters of signal processing circuit are optimized and the linear region of GMI sensor was adjusted by bias current. The measurement results are analyzed: the accuracy of sensor is less than±0.81%FS with the measurement range±0.15A under the greenhouse, then by designing negative feedback to form a closed-loop system to improve the measurement range and the accuracy of sensor: The measurement accuracy is less than±0.62%FS with the linear range±0.9A.It can be used in the weak current measurement field.
引文
[1]鲍丙豪.非晶丝单磁芯双线圈多谐振荡桥弱电流传感器.电测与仪表.2000,37(412)24-26
    [2]Mohri K,Kohzawa T,Kawashima K,et al.Magneto-inductive effect(MI effect)in amorphous wires.IEEE Transactions on Magnetics.1992(28):3150-3152
    [3]Usov N A,Antonov A S,Lagarkov A N.Theory of giant magneto-impedance effect in amorphous wires with different types of magnetic anisotropy.Journal of Magnetism and Magnetic Materials.1998(185):159-173
    [4]Beach R S,Berkowitz A E.Giant magnetic field dependent impedance of amorphous FeCoSiB wire.Applied Physics Letter.1994(64):3652-3654
    [5]Beach R S,Smith N,Platt C L,et al.Magneto-impedance effect in NiFe plated wire.Applied Physics Letter.1996(68):2753-2755
    [6]Favieres C,Aroca C,Sanchez M C,et al.Giant magneto-impedance in twisted amorphous CoP multilayers electrodeposited onto Cu wires.Journal of Magnetism and Magnetic Materials.1999(196):224-226
    [7]王新征,袁望治,阮建中等.化学镀丝巨磁阻抗效应研究.华东师范大学学报.2004(2):66-68
    [8]孙怀君,方允樟,施方也等.预退火对Fe_(73.5)Cu_1Nb_3Si_(13.5)B_9纳米晶合金巨磁阻抗效应的影响.浙江师范大学学报.2007,30(2):168-170
    [9]Panina L V,Mohri K,Uchiyama T.Giant magneto-impedance in CO-rich amorphous wires and films.IEEE Transactions on Magnetics.1995(31):1249-1260
    [10]李晓东,袁望治,赵振杰等.纳米晶FeCuNbSiB多层膜的巨磁阻抗效应研究.功能材料2004,6(35):686-688
    [11]杨全民,王玲玲,孙德成.介观结构对纳米晶软磁合金巨磁阻抗效应影响的理论分析.物理学报.2005,54(12):5730-5736
    [12]Kraus L,Frait Z,Pirota K R,et al.Giant magneto-impedance in glass-covered amorphous microwires.Journal of Magnetism and Magnetic Materials.2003,254-255:3991
    [13]施方也,黄翩翩,林根金.驱动方式对玻璃包裹铁基纳米晶丝巨磁阻抗(GMI)效应的影响.浙江师范大学学报.2006,29(3):287-292
    [14]刘龙平,赵振杰,阮建中等.纵向驱动纳米微晶玻璃包裹丝的巨磁阻抗效应.华东师范大学学报.2004(1):45-48.
    [15]Moro C,Garcia A.Giant magneto-impedance effect in nanocrystalline glass-covered wires.Journal of Magnetism and Magnetic Materials.2005(290/291):1085-1088
    [16]Garcia D,Kurlyandskaya G V,Vazquez M,et al.Effect of induced magnetic anisotropy and domain structure features on magnetoimpedance in stress annealed Co-rich amorphous ribbons.Journal of Magnetism and Magnetic Materials,1999(196):259-261
    [17]Kim C.G,Kim C.O,Yoon S S.Current sensor application of asymmetric giant magnetoimpedance in amorphous Materials.Sensors and Actuators,Physical,A.2003(106):19-21
    [18]Baibich M.N,Broto J M,Fert A,et al.Giant magnetoresistance of Fe/Cr magnetic supper lattices.Physical Review Letter.1993,61(21):2472-2475.
    [19]吴厚政,刘宜华,张林等.Co-Fe-Ni-Nb-Si-B非晶软磁合金薄带巨磁阻抗效应.金属学报.2000,36(9):997-1000
    [20]商干兵,周勇,余先育等.夹心结构FeNi/Cu/FeNi多层膜巨磁阻抗效应研究.功能材料.2006,2(37):194-196
    [21]陈征,李德仁,卢志超等.Co_(71.8)Fe_(4.9)Nb_(0.8)Si_(7.5)B_(15)玻璃包覆非晶丝巨磁阻抗效应研究.金属功能材料.2006,13(2):11-13
    [22]Kurlyandskaya,Galina V,Pfida V M.et al.GMI sensitive element based on commercial Vitrovac[registered trademark]amorphous ribbon.Sensors and Actuators.A:Physical,2004,110(1-3):228-231
    [23]Goktepe M,Ege Y,Bayri N.et al.Non-destructive crack detection using GMI sensor.Physica Status Solidi C:Conferences,2004,1(12):3436-3439
    [24]Chiriac,Horia,Tibu,Mihai.et al.Magnetic GMI sensor for detection of biomolecules.Journal of Magnetism and Magnetic Materials.2005,293(1):671-676
    [25]De Cos D,Sandacci S I,Garcia-Arribas A.et al.Impedance matching networks for power transfer and sensitivity enhancement in GMI sensors.IEEE Transactions on Magnetics.2005,41(10):3655-3657
    [26]Tan K,Komakine T,Yamakawa K.et al.Detection of high-frequency magnetic fields by a GMI probe.IEEE Transactions on Magnetics,2006,42(10):3329-3331
    [27]Bensalah A D,Alves F,Barrue R.et al.GMI sensors based on stress-annealed iron based nanocrystalline ribbons Sensors and Actuators,A:Physical,2006,129(1-2):142-145
    [28]Giouroudi I,Hauser H,Musiejovsky L.et al.Giant magnetoimpedance sensor integrated in an oscillator system.Journal of Applied Physics.2006,99(8):08D906
    [29]Alves F,Rached L,Moutoussamy J.et al.Trilayer GMI sensors based on fast stress-annealing of FeSiBCuNb ribbons.Sensors and Actuators,A:Physical,2008,142(2):459-463
    [30]孙光飞,强文强.磁性功能材料.北京:化学工业出版社,2007
    [31]Hauser H,et al.Magnetic field sensor by giant magneto-impedance.1999.Proceedings of the 1999 16~(th)IEEE Instru.& Measure.Tech.Conf,Venice,Italy,1999,1:275-278.DN-05346625,AN-EIP99084760081
    [32]Uchiyama T,Mohri K,Shinkai M,et al.Position sensing of magnetite gel using MI sensor for brain tumor detection.IEEE Transactions on Magnetics.1997(33):4266-4268
    [33]鲍丙豪.单磁芯双绕组非晶丝新型磁场传感器的研究.仪器仪表学报.2001,22(2):168-171
    [34]鲍丙豪,丁建宁,李长生.FeCuNbSiB单纳米晶环形磁芯双绕组新型微电流传感器.电力系统自动化.2004,28(15):104-107
    [35]鲍丙豪,蒋峰,赵湛等.基于非晶带巨磁阻抗效应的新型弱磁场传感器.传感技术学报.2006,19(6):2380-2383
    [36]鲍丙豪,赵湛,董钢等.新型非晶磁芯巨磁阻抗效应弱电流传感器.电子器件.2006,29(4):1035-1038
    [37]鲍丙豪,蒋峰.单非晶丝磁芯双绕组新型磁传感器理论与实验研究.传感技术学报.2006,19(4):1001-1008
    [38]张清,李欣,王清江.新型巨磁阻抗传感器的特性研究.传感技术学报.2007,20(3):578-581
    [39]Turnbull D,Cohen M H.Concerning reconstructive transformation and formation of glass.Journal of chemical physics.1958(29):1049-1054
    [40]Klements W,Willens R H,Duwez P,Non-crystalline structure in solidified gold-silicon alloys.Nature.1960(187):869-870
    [41]Pond R,Maddin R.Method of Producing Rapidly Solidified Filamentary Castings.TMS-AIME.1969(245):2475
    [42]Nogues J,Rao K V.Frequency dependence of the ferro-to-spinglass transition of amorphous Fe-rich Fe-Zr.Journal of Applied Physics.1994(75):5862
    [43]Machado F L A,Martins C S,Rezende S M.Giant magnetoimpedance in the ferromagnet Co_(70-x)Fe_xSi_(15)B_(10)alloys.Physical Review B.1995(51):3926-3929
    [44]Machado F L A,Martins C S,Rezende S M.Giant ac magnetoresistance in the soft ferromagnet Co_(70.4)Fe_(4.6)Si_(15)B_(10).Journal of Applied Physics.1994(75):6563-6565
    [45]Panina L V,Mohri K.Magneto-impedance effect in amorphous wires.Physical Review Letter.1994(65):1189-1191
    [46]Panina L V,Mohri K.Mechanism of the magnetoimpedance effect in negative magnetostrictive amorphous wires.MSJ Magnetics Society of Japan.1994(18):245
    [47]Panina L V,Mohri K,Bushida K,et al.Sensitive and quick response micro magnetic sensor utilizing magneto-impedance in Co-rich amorphous wires.IEEE Transactions on Magnetics.1995(31):1266
    [48]Panina L V,Mohri K,Uchiyama T,et al.Giant magneto-impedance in Co-rich amorphous wires and films.IEEE Transactions on Magnetics.1995(31):1249-1260
    [49]Velazquez J,Vazquez M,Chen D X,et al.Giant magnetoimpedance in nonmagnetostrictive amorphous wires.Physical Review B.1994(50):16737-16740
    [50]Beach R S,Berkowitz A E.Giant magnetic field dependent impedance of amorphous FeCoSiB wire.Applied Physics Letter.1994(64):3652
    [51]Lee H,Kim Y K,Lee K J.et al.A novel annealing technique for the magneto-impedance effect in amorphous Co_(66)Fe_4Ni_1B_(14)Si_(15)alloy.Journal of Magnetism and Magnetic Materials.2000(215):310-312
    [52]Shen L P,Mohri K.Sensitive stress-impedance micro sensor using amorphous magnetostrictive wire.IEEE Transactions on Magnetics.1997(33):3355-3357
    [53]廖绍彬.铁磁学.北京.科学出版社.1988.
    [54]董承远,陈世朴,徐祖耀.横向巨磁阻抗效应中磁导率张量的理论研究.真空科学与技术.2002,22(5):333-337.
    [55]Chen A P,Britel M R,Zbukov A,et al.Influence of AC magnetic field amplitude on the surface magnetoimpedance tensor in amorphous wire with helical magnetic anisotropy.IEEE Transactions on Magnetics.2004,40(5):3368-3377.
    [56]Dong C Y.Hsu T Y.A modified model of GMI effect in amorphous thin films with transverse magnetic anisotropy.Journal of Magnetism and Magnetic Materials.2003(263):78-82
    [57]Kraus L.Theory of giant magneto-impedance in the planar conductor with uniaxial magnetic anisotropy.Journal of Magnetism and Magnetic Materials.1999,195(3):764-778.
    [58]鲍丙豪.非晶态合金薄带与膜的巨磁电阻抗效应理论及计算.物理学报.2006,55(7):3698-3607.
    [59]He J,Guo H Q,Shen B G,et al.Influence of annealing on the magnetic properties and magneto-impedance response in Fe_(83)Zr_7B_8Cu_1 ribbons.Material Science and Engineering.2001(A304-306):988-991.
    [60]Inada K,Mohri K,Inuzuka K.Quick Response Large Current Sensor Using Amorphous MI Element Resonant Multivibrator.IEEE Transactions on Magnetics.1994,30(6):4623-4625.
    [61]Rheema Y W,Kima C G,Kima C O,et al.Current sensor application of asymmetric giant magnetoimpedance in amorphous materials.Sensors and Actuators A.2003(106):19-21
    [62]Michal Malatek,Pavel Ripka,Ludek Kraus.Double-Core GMI Current Sensor.IEEE Transactions on Magnetics.2005(41):3703-3705
    [63]Rheem Y W,Kim C G,Kim C O,et al.Current sensor application of asymmetric giant magneto-impedance in amorphous materials.Sensors and Actuators.2003(106):19-21
    [64]丁士圻主编.模拟滤波器.哈尔滨.哈尔滨工程大学出版社.2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700