用户名: 密码: 验证码:
还原炉温度监控系统研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以某厂金属加工车间60台锗还原炉为研究对象,研制了一套分布式温度控制系统。该系统设计合理、功能完善、性能优越,在实际生产中应用效果良好。提高了加热过程的控制精度,减少了操作人员的工作量,保证了产品质量,使企业生产的自动化程度达到了较高的水平。
     系统采用分布式结构,上位机采用控制计算机,完成系统监控画面的显示与管理,应用程序的运行,数据库的管理和对下位机的监控等功能;下位机采用S7-300/400PLC,实现还原炉温度控制系统的检测和显示;温度曲线的设定;上位机与PLC之间的通信;主站,从站之间的通信;温度控制等功能。
     为了使炉温控制系统具有较好的控制性能指标,本文设计了变速积分分离PID控制算法,理论分析和实际应用表明,采用这种算法,系统不仅动态特性好,有效地抑制了超调过大和积分饱和等问题,而且达到了满意的稳态精度。
     在本文的最后,针对锗还原过程中还原终点判断问题,对控制方法进行了深入的研究。根据生产工艺的要求,结合现场技术人员的丰富经验,采用模糊控制的思想建立了规则表,实现了还原过程终点的自动判断。现场试验结果表明,这种方法有效的改善了以往完全由人工操作出现的误差,节省能源,具有实际应用价值。
The paper is proposed based on temperature control system of 60 reduction furnaces in a Metalworking shop. A characteristic distributed temperature control system has been designed. This system has reasonable design, perfect function, superior performance and good results in the actual production. It improves the control precision in heating process, reduces the workload of the operation, ensures the quality of products, and makes the degree of automation in production to a higher level.
     The system has a distributed architecture. The host station uses a performance industrial control computer. The display of the pictures of monitoring and controlling, the data management and the control task of the subordinate station will be coordinated and organized through the host station. The subordinate station uses S7-300/400 PLC to realize the temperature measurement and display, the temperature curve settings, the communication between the host and subordinate station, and the temperature control function etc.
     In order to obtain perfect control performance, a method of speed integral separation PID control has been designed in this paper. Theoretical analysis and practical application show that the system is dynamic performance, effectively curb the excessive overshoot and integral issues such as saturation, and obtain a high satisfactory of steady-state accuracy by using this method.
     In the final of this paper, against Germanium reduction process in the end of judgment, make an in-depth study in control method. According to the requirements of the production process, combined with the experience of technical staff, the control rule table has been established by the thinking of Fuzzy control and the fuzzy controller in the process of reduction has been designed. Field test results show that this control method is effective in improving the previous manual error, saving energy and have practical application value.
引文
[1]薛元波.工业炉温度控制技术研究[J].有色技术加工,2005(12):51-52
    [2]邵本述.国外工业炉及热工文摘[J].工业炉,2004,26(5):51-53
    [3]吴为民,王仁丽.温度控制系统的发展概况[J].工业炉,2002,24(5):18-21
    [4]宫淑贞,王冬青.可编程控制器原理及应用.北京:人民邮电出版社,2002
    [5]李秀中,PLC在箱式电阻炉温度控制系统中的应用[J],工业加热,2004(33)3:64-66
    [6]李延平,马俊朋.Profibus现场总线通讯技术的应用研究[J],控制系统,2007,20(5):59-61
    [7]徐明等.现场总线技术在电厂中的应用[J],微计算机信息,2006,(1)5-27
    [8]印浩.智能温度控制[D].硕士学位论文,2003
    [9]胡社教,徐晓冰,杨柳.温度控制仪表的模糊PID控制[J].合肥工业大学学报,1998,(10):20
    [10]Zhongbao Chen,Lih-Sheng Turng.A review of current developments in p rocess and quality control for injection molding[J],Advances in Polymer Technology,2005,24(3):165-182.
    [11]向文圆,蔡宁生.基于BP神经网络的蒸汽温度控制[J].自动化仪表,2000,(12):4
    [12]梁学敏.ABB变频器的传动控制及与S7-300的通讯.微计算机信息.2004 20(3):68-70
    [13]郑明方.管式裂解炉温度神经网络优化控制[J].江苏石油化工学院学报,1999(6):40
    [14]宋湛苹,史京.工业炉的现状与发展趋势[J].工业炉,2004,26(6):13-18
    [15]李新春.多种控制策略在炉温控制中的应用与研究[D].硕士学位论文,2003
    [16]www.chinage.com.cn
    [17]袁浩,郝莹,郑欣等.基于PLC的积分分离PID算法在液位系统中的应用[J],2002(21)1:56-58
    [18]马翠红,景会成,李晓峰等.基于DCS的加热炉温度专家控制的实现[J].微计算机信息,2005,(21)4:72-74
    [19]刘琳,王刚,张寿明.基于Profibus的还原炉温度DCS系统设计[J].工业控制计算机,2007(10):20
    [20]崔坚,李佳.西门子工业网络通信指南[M],机械工业出版社,2000.9
    [21]陆建国.微机控制的可控硅交流调功器[J].江苏电器,2005(6)
    [22]王吉坤,何蔼平.现代锗冶金[M].冶金工业出版社.2005
    [23]阳宪惠.现场总线技术及其应用[M].北京:清华大学出版社,2001
    [24]胡敏编著.深入浅出西门子S7-300PLC.北京:北京航空航天大学出版社,2003
    [25]http://www.siemens.com.cn
    [26]西门子自动化与驱动集团编著.S7-300和S7-400梯形逻辑编程.北京:西门子自动化与驱动集团出版,2003
    [27]万鸾飞,李康.浅谈PLC中PID功能的实现方法.芜湖职业技术学院学报.2006(8)319-21
    [28]诸静等.模糊控制原理与应用[M],北京机械工业出版社,1995.7
    [29]邹其洪,李传琦,赵艳辉计算机测量与控制用算法实现工业窑炉微机温度控制[J],2002,10(1):35-37
    [30]Halme A,Ahava O.Automatic Tuning of PID and Other SimpleRegulators in a Digital Process Automatic System.IEEE Trans Industrial Electronics,1984,IE-31,4(11):74-78
    [31]陈积玉.基于改进PID控制的实现及仿真[J],自动化仪表,2006,25(7):74-75
    [32]胡祝兵,易江,王娟.积分分离PID控制在温控系统中的仿真研究[J],承德石油高等专科学校学报,2006,8(6):17-19
    [33]陈尔禹,李虎雄.数字PID控制器的算法改进[J],0八一科技.2003,(4)35-37
    [34]陶永华等.新型PID控制及其应用[M].机械工业出版社,1998
    [35]李士勇等.模糊控制和智能控制理论与应用[M],哈尔滨:哈尔滨工业大学出版社,1990
    [36]Tanaka K and Ugeno.Stability Analysis and Design of Fuzzy Controller [M].Fuzzy sets and systems,1992,45:135-156
    [37]Ortega R,Kelly R PID Self-Tuners:Some Theoretical and Practical Aspects.IEEE Trans Industrial Electronics,1984,IE-31,4(11)332-334
    [38]King PJ,Madani EH.The Application of Fuzzy Control Systems to Industial Process.Automatic,1997,3:235-242
    [39]Yang Yu,A fuzzy parameters adaptive PID controller design of digital positional servo system.Proceedings of 2002 International Conference on machine Learning and Cybernetics,2002,(3):10-14.
    [40]Austom KJ Expert Control,Automatic1986,(22):277
    [41]Ton.A.Control Engineering Review of Fuzzy Systems.Automatic,1997(13):559-569
    [42]L.A.Zadel.Fuzzy sets[J].Information Control,1965,(8):338-353
    [43]E.H.Mamdani.Application of Fuzzy Algorithms for Control of Simple Dynamic Plant[J].Proc 1974 IEEE,121:1585-1588
    [44]Christine Haissig.Adaptive Fuzzy Temperature Control for Hydronic Heating Systems[J].IEEE Control Systems Magazine,2000,20(2):39-48
    [45]Zhiqiang GAO,Thomas A.Trautzsch,James G.Dawson.A Stable Self-Tuning Fuzzy Logic Control System for Industrial Temperature Regulation[J].Transaction On Industry Applications,2002,38(2):414-424
    [46]郑晟等编著.现代可编程控制器原理与应用[J].北京:科学出版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700