用户名: 密码: 验证码:
熔体与橄榄岩反应:对地幔包体中尖晶石成分变异的制约
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文进行了高温高压条件下角闪石榴辉石岩与尖晶石二辉橄榄岩和角闪石榴辉石斜长片麻岩与尖晶石方辉橄榄岩反应的熔融实验研究,并利用电子探针对反应后的矿物成分和熔体成分进行了分析。其结果对揭示华北克拉通岩石圈地幔深部作用过程与演化具有重要意义。
     实验结果表明,含水SiO_2不饱和熔体(角闪石榴辉石岩)-尖晶石二辉橄榄岩反应形成了纯橄岩(D)-方辉橄榄岩(H)-二辉橄榄岩(L)带。从D-H-L带,橄榄石的Mg#和尖晶石的Mg#逐渐升高,而尖晶石的Cr#逐渐降低,从反应前的铬尖晶石变成了反应后的铬铁矿。同时,反应后熔体的Mg#增高。上述结果表明,地幔低镁纯橄岩的形成以及方辉橄榄岩和纯橄岩中铬铁矿的形成均是熔体-橄榄岩反应的结果,而非岩浆堆积成因。同时,熔体-橄榄岩反应是造成adakitic熔体富镁的动因之一。
     含水SiO_2过饱和熔体(角闪石榴辉石斜长片麻岩)-尖晶石二辉橄榄岩反应形成了斜方辉石(岩/带),同时造成了尖晶石向铬铁矿转变以及反应后熔体Mg#的增高。上述结果表明,富硅质熔体-地幔橄榄岩反应是造成岩石圈地幔从亏损型向富集型转变的主导因素,同时也是造成adakitic熔体富镁的动因之一。
     综合上述实验结果可以看出,熔体-橄榄岩反应在岩石圈地幔深部演化中具有普遍性,它不仅是造成岩石圈地幔转型的主要方式之一,同时也是大陆地区高镁火成岩形成的主要机制之一。实验结果与太行山和鲁西高镁闪长岩中地幔橄榄岩包体组合及矿物成分变异的一致性揭示,中生代早期加厚陆壳的拆沉是华北克拉通破坏的主导机制,而早白垩世熔体-橄榄岩反应则是制约岩石圈地幔减薄的主导机制。
High-temperature and high-pressure experiments on the reactions between Hb-Gt pyroxenite and spinel-lherzolite as well as between Hb-Gt-Py- plagiogneiss and spinel-harzburgite were carried out to constrain the composional variation of spinels from the mantle xenoliths and reveal the lithospheric deep processes.
     1 Melt-peridotite reaction and results
     (1) Am-Gt-pyroxenite and spinel-lherzolite reaction
     Experiment on reaction of Hb-Gt pyroxenite with Sp-lherzolite was carried out at 1500℃and 3.5GPa for 24 hours in a Cubic model HTHP apparatus in the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry at Jilin University. The results indicate that the Hb-Gt pyroxenite was melted, that the dunite, harzburgite, and lherzolite zones were formed during the melt-Sp-lherzolite, and that the spinel in lherzolite had been changed into the chromite in dunite. Cr#’s of spinels gradually decrease and Mg#’s of spinels increase from dunite, harzburgite to lherzolite zones, whereas Mg#’s of olivines increase. In contrast, the Mg#’s of melts increase from the dunite to the melts far from the melt-lherzolite interface.
     (2) Hb-Gt-Py plagiogneiss and spinel-harzburgite reaction
     Experiment on the reaction of Hb-Gt-Py plagiogneiss with Sp-harzburgite was carried out at 1350℃and 1.5GPa for 6 hours in Brown University by Liang Yan. Differently, dunite layer is not observed. Instead, a thin Opx layer is formed at the melt-rock interface. The irregular orthopyroxenes occur around or partly around relict olivine near the interface. The bright rim of the spinel on EBS images implied a relatively high Cr_2O_3 content and low Al2 O3 content, similar to the above mentioned experimental results. Melt compositional profiles from the melt-lherzolite interface to the melt far from the interface show the increases of SiO_2 , CaO, Al_2O_3 and decrease of MgO, FeO.
     2 Compositional variation of spinel in melt-lherzolite reaction
     Most of the spinels had changed into chromites during the melt-lherzolite reaction. Relict spinel cores can be only observed in the lherzolite zone.
     Compared with the initial spinel, reactive spinels generally display the decreases of Al_2O_3 , MgO and the increases of Cr_2O_3 , FeO as well as minor increase of TiO_2, MnO and CaO. From the dunite to lherzolite zones, the Mg#’s of spinels increase from 46 to 76 and the Cr#’s of spinels decrease from 68 to 12, whrereas the Mg#’s of olivines increase from 75 to 90, the latter is similar to the initial spinel and olivine in the Sp-lherzolite.
     3 Compositional variation of spinel in peridotite xenoliths from the Taihang Mountains
     The peridotite xenoliths are discovered in Fushan high-Mg diorites with the Early Cretaceous ages from southern Taihang Mountains. The host rocks consist mainly of gabbro-diorite, diorite and monzodiorite. Detailed studies on petrography and mineral chemistry indicate that the xenoliths are composed of chromite-bearing dunite, Sp-harzburgite and Sp-lherzolite. The Sp-harzburgite and Sp-lherzolite are dominated in the xenoliths. The peridotites have SiO_2=40.16-45.99%, Al_2O_3 =0.15-1.47%, MgO=43.67-47.5%, TiO_2=0.01-0.03%,Mg# =90-93. They have the REE abundances of 0.59-5.16 ppm and are characterized by enrichment in light rare earth elements (LREEs) and high field strength elements (HFSEs) such as Nb, Zr, Hf, depletion in heavy rare earth elements (HREEs) and minor positive Eu anomalies (Eu/Eu*=0.83-1.52).
     Spinel compositional profiles from core to rim show the decrease of Mg#’s and increases of Cr#’s and fO_2 , which is consistent with the presences of hornblende and phlogopite around the spinels. The Mg#’s increase and Cr#’s decrease for spinels can be found from the dunite-harzburgite to the lherzolite. 4 Melt-peridotite reaction constrains the evolution of continental lithospheric mantle
     The experimental results have revealed that dunite and harzburgite can be formed by melt-peridotite reaction, different from the traditional view being residue of highly degree of partial melting of mantle. Two main reactions in the lithospheric mantl are as follows: Olivine + SiO_2 (silica-rich melt)=Opx (+silica-poor melt) (1) Opx + silica-poor melt=Olivine + SiO_2 (silica-rich melt) (2)
     The two types of reactions are the main reasons to result in the mantle heterogeneity.
     The results of the lherzolite dissolution depend on the composition of the reacting melt. Generally, the melt is characterized by enrichment in Si, Ca, Fe and depletion in Mg, Ni. Melts-peridotite reaction could result in enrichment in Si, Ca, Fe and depletion in Mg, Ni, i.e., the formation of low Mg peridotite.
     The North China Craton (NNC) is one of the oldest Archean cratons in the world. It has been generally believed that a large scale of thinning beneath the North China Craton happened in the Yanshanian and Himalayan from a number of recent studies. The discovery of late Triassic eclogite xenoliths in the early Cretaceous adakitic rocks from the Xu-Huai region indicates that the lower crustal thickening in the eastern NCC took place during Early Mesozoic, which resulted from the Triassic collision between the Yangze craton (YC) and the NCC. The thickening, foundering and partial melting of the Archean NCC mafic lower crust, as well as subsequent adakitic melt-mantle interaction have been demonstrated by chronological and geochemical data of eclogite xenoliths and host adakitic rocks in the Xu-Huai area. Dunite is believed to be the ideal pathways by which mantle melts travel through the overlying mantle to be erupted to the surface. Melt-peridotite reaction is common in the Mesozoic and Cenozoic lithospheric mantle in East China. It is an important mechanism for the compositional transformation and of lithospheric mantle, and result in the enrichment in the lithospheric mantle. Melt-peridotite reaction is one of the main reasons for the thinning of the NCC.
引文
[1] Aharonov E, Whitehead J, Kelemen P B, Spiegelman M. Channeling instability of upwelling melt in the mantle. Journal of Geophysical Research, 1995, 100(B10): 20433-20450.
    [2] Aharonov E, Spiegelman M, Kelemen P. Three-dimensional flow and reaction in porous media: implications for the Earth’s mantle and sedimentary basins. Journal of Geophysical Research, 1997, 102(B7): 14821-14833.
    [3] Arculus R J. Aspects of magma genesis in arcs. Lithos, 1994, 33(1-3): 189-208.
    [4] Arndt N T, Christensen U. The role of lithospheric mantle in the continental flood volcanism: thermal and geochemical constraints. Journal of Geophysical Research, 1992, 97(B7): 10967-10981.
    [5] Asimow P D, Stolper E M. Steady-state mantle-melt interactions in one dimension: I. Equilibrium transport and melt focusing. Journal of Petrology, 1999, 40(3): 475-494.
    [6] Ballhaus C, Berry R F, Green D H. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib. Mineral. Petrol., 1991, 107(1): 27-40.
    [7] Bell D R, Gregoire M, Grove T L, Chatterjee N, Carlson R W, Buseck P R. Silica and volatile element metasomatism of Archean mantle: a xenolith-scale example from the Kaapvaal Craton. Contrib. Mineral. Petrol., 2005, 150(3): 251-267.
    [8] Bodinier J L, Vasseur G, Vernieres J, Dupuy C, Fabries J. Mechanisms of mantle metasomatism: geochemical evidence from the Lherz orogenic peridotite. Journal of Petrology, 1990, 31(3): 597-628.
    [9] Boyd F R. Compositional distinction between oceanic and cratonic lithosphere. Earth and Planetary Science Letters, 1989, 96(1-2): 15-26.
    [10] Boyd F R, Pokhilenko N P, Pearson D G, Mertzman S A, Sobolev N V, Finger L W. Composition of the Siberian cratonic mantle; evidence from Udachnaya peridotite xenoliths. Contrib. Mineral. Petrol., 1997, 128(2-3): 228-246.
    [11] Bussod G, Christie J M. Textural development and melt topology in spinel lherzolite experimentally deformed at hypersolidus conditions. Journal of Petrology Special Lherzolite Issue, 1991, 17-39.
    [12] Castillo P R. 埃达克岩成因回顾. 科学通报, 2006, 51(6): 617-627.
    [13] Chen L H, Zhou X H. Subduction-related metasomatism in the thinning lithosphere: Evidence from a composite dunite-orthopyroxenite xenolith entrained in Mesozoic Laiwu high-Mg diorite, North China Craton. Geochem. Geophys. Geosys., 2005, 6(6), Q06008, doi: 10.1029/2005GC000938.
    [14] Cascio M L, Liang Y, Shimizu N. An experimental study of the grain-scale processes ofperidotite melting: implications for major and trace element distribution during equilibrium and disequilibrium melting. Contrib. Mineral. Petrol., 2007, in press.
    [15] Daines M J, Kohlstedt D L. The transition from porous to channelized flow due to melt-rock reaction during melt migration. Geophysical Research Letters, 1994, 21(2): 145-148.
    [16] Dawson J B. Kimberlites and their xenoliths. Springer Verlag, NY, 252, 1980.
    [17] Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 1990, 347: 662-665.
    [18] Defant M J, Xu J F, Kepezhinskas P, Wang Q, Zhang Q, Xiao L. Adakites: some variations on a theme. Acta Petrologica Sinica, 2002, 18(2): 129-142.
    [19] Esperanca S, Holloway J R. The origin of the high-K latites from Camp, Arizona: constraints from experiments with variable fO2 and aH2O. Contrib. Miner. Petrol., 1986, 93: 504-512.
    [20] Fisk M R. Basalt-magma interactions with harzburgite and the formation of high magnesium andesites. Geophysical Research Letters, 1986, 13(5): 467-470.
    [21] Forneris J F, Holloway J R. Phase Equilibria in Subducting Basaltic Crust: Implications for H2O release from the slab. Earth and Planetary Science Letters, 2003, 214: 187-201.
    [22] Frey F A, Green D H. The mineralogy, geochemistry and origin of lherzolite inclusions in Victorian basanites. Geochim Cosmochim Acta, 1974, 38(7): 1023-1059.
    [23] Gao S, Luo T C, Zhang B R, Zhang H F, Han Y W, Hu Y K, Zhao Z D. Chemical composition of the continental crust as revealed by studies in East China: Geochimica et Cosmochimica Acta, 1998, 62: 1959–1975.
    [24] Gao, S., Rudnick, R.L., Carlson, R.W., McDonough, W. F., and Liu, Y.S. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton. Earth and Planetary Science Letters, 2002, 198: 307-322.
    [25] Gao S, Rudnick R L, Yuan H L, Liu X M, Liu Y S, Xu W L, Ling W L, Ayers J, Wang X C, Wang Q H. Recycling lower continental crust in the North China Craton. Nature, 2004, 432(7019): 892-897.
    [26] Gregory M. Yaxley and David H. Green, Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust. Schweiz. Mineral. Petrogr. Mitt. , 1998, 78: 243-255.
    [27] Griffin W L, Zhang A, O’Reilly S Y, et al. Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton. In : Flower M F J, Chung S-L, Lo C-H, et al (eds). Mantle dynamics and plate interaction in east Asia. American Geophysical Union, Geodynamics Series 27, 1998, 100: 107-126
    [28] Henderson P. Rare Earth Element Geochemistry. Amsterdam: Elsevier, 1984, 467-499.
    [29] Hermann J, Green D H. Experimental constraints on high pressure melting in subductedcrust. Earth and Planetary Science Letters, 2001, 188(1-2): 149-168.
    [30] Hermann J. Experimental constraints on phase relations in subducted continental crust. Contrib. Mineral. Petrol., 2002, 143(2): 219-235.
    [31] Hofmann A W. Chemical differentiation of the Earth: the relationships between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 1988, 90(3): 297-314.
    [32] Kay R W. Aleutian magnesian andesites: melts from subducted Pacific Ocean crust. Journal of Volcanology and Geothermal Research, 1978, 4(1-2): 117-132.
    [33] Kay S M, Ramos V A, Marquez M. Evidence in Cerro Pampa volcanic rocks for slab-melting prior to ridge-trench collision in southern South America. Journal of Geology, 1993, 101(6): 703-714.
    [34] Kelemen P B. Reaction between ultramafic rock and fractionating basaltic magma I. phase relations, and the origin of calcalkaline magma series, and the formation of discordant dunite. Journal of Petrology, 1990, 31(1): 51-98.
    [35] Kelemen P B. Silica enrichment in the continental upper mantle via melt/rock reaction. Earth and Planetary Science Letters, 1998, 164: 387-406.
    [36] Kelemen P B, Ghiorso M S. Assimilation of peridotite in zoned calc-alkaline plutonic complexes: evidence from the Big Jim Complex, Washington Cascades. Contrib. Mineral. Petrol., 1986, 94(1): 12-28.
    [37] Kelemen, P B, Joyce D B, Webster J D, Holloway, J R. Reaction between ultramafic rock and fractionating basaltic magma; II, Experimental investigation of reaction between olivine tholeiite and harzburgite at 1150-1050 degrees C and 5 kb. Journal of Petrology, 1990, 31(1): 99-134.
    [38] Kelemen P B, Dick H J B, Quick J E. Formation of harzburgite by pervasive melt/ rock reaction in the upper mantle. Nature, 1992, 358(6388): 635-641.
    [39] Kelemen P B, Shimizu S N, Alters V J M. Extraction of midocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature, 1995a, 375(6534): 747-753.
    [40] Kelemen P B, Whitehead J A, Aharonov E, Jordahl K A. Experiments on flow focusing in soluble porous media, with applications to melt extraction from the mantle. Journal of Geophysical Research, 1995b, 100(B1): 475–496.
    [41] Kelemen P B, Hirth G, Shimizu N, Spiegelman M, Dick H J B. A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Philosophical Transactions-Royal Society, Mathematical, Physical and Engineering Sciences, 1997, 355(1723): 283-318.
    [42] Kelemen P B, Hart S R, Bernstein S. Silica enrichment in the continental upper mantle via melt/rock reaction. Earth and Planetary Science Letters, 1998, 164(1-2): 387-406.
    [43] Kelemen P B, Braun M, Hirth G. Spatial distribution of melt conduits in the mantle beneath oceanic spreading ridges: observations from the Ingalls and Oman ophiolites. Geochem. Geophys. Geosys., 2000, 1(7): DOI 1999GC000012.
    [44] Kepezhinskas P K, Defant M J, Drummond M S. Na metasomatism in the island-arc mantle by slab melt-peridotite interaction: evidence from mantle xenoliths in the north Kamchatka arc. Journal of Petrology, 1995, 36(6): 1505-1527.
    [45] Kesson S E, Ringwood A E. Slab-mantle interactions: 2. The formation of diamonds. Chemical Geology, 1989, 78(2): 97-118.
    [46] Kogiso T, Hirose K, Takahashi E. Melting experiments on homogeneous mixtures of peridotite and basalt: application to the genesis of ocean island basalt. Earth and Planetary Science Letters, 1998, 162(1-4): 45-61.
    [47] Kushiro I. Partial melting of mantle wedge and evolution of island arc crust. J. Geophys. Res. 1990, 95(B10): 15929-15939.
    [48] Liu Y S, Gao S, Lee C T, Hu S H, Liu X M, Yuan H L. Melt–peridotite interactions: Links between garnet pyroxenite and high-Mg# signature of continental crust. Earth and Planetary Science Letters, 2005, 234(1-2): 39-57.
    [49] Maury R C, Defant M, Joron J L. Metasomatism of the sub-arc mantle inferred from trace element in Philippine xenoliths. Nature, 1992, 360(6405): 661-663.
    [50] McDonough W F. Constraints on the composition of the continental lithospheric mantle. Earth and Planetary Science Letters, 1990, 101(1): 1-18.
    [51] McKenzie D. Some remarks on the movement of small melt fractions in the mantle. Earth and Planetary Science Letters, 1989, 95(1-2): 53-72.
    [52] Menzies M A, Fan W, Zhang M. Paleaozoic and Cenozoic lithoprobes and the loss of 120 km of Archean lithosphere, Sino-Korean craton, China. Prichard H M, Alabaster T, Harris N B, et al. Magmatic processes and plate Tectonics. Geological Society of London Special Publication, 1993, 76: 71-81.
    [53] Menzies M A, Chazot G. Fluid processes in diamond to spinel facies shallow mantle. Journal of Geodynamics, 1995, 20(4): 387-415.
    [54] Menzies M A, Xu Y. Geodynamics of the North China craton. In: Flower M F J, Chung S-L, Lo C-H, et al (eds). Mantle dynamics and plate interaction in east Asia. American Geophysical Union, Geodynamics Series 27, 1998, 100: 155~164.
    [55] Morgan Z, Liang Y. An experimental and numerical study of the kinetics of harzburgite reactive dissolution with applications to dunite dike formation. Earth and Planetary Science Letters, 2003, 214(1-2): 59-74.
    [56] Morgan Z, Liang Y. An experimental studay of the kinetics of lherzolite reactive dissolution with applications to melt channel formation. Contrib. Mineral. Petrol., 2005, 150(4): 369-385.
    [57] Morishita T, Andal E S, Arai S, Ishida Y. Podiform chromitites in the lherzolite-dominant mantle section of the Isabela ophiolite, the Philippines. Isl. Arc., 2006, 15: 84-101.
    [58] Niu Y L. Mantle melting and melt extraction processes beneath ocean ridges : evidence from abyssal peridotites. Journal of Petrology, 1997, 38(8): 1047-1074.
    [59] Nixon P. H. Mantle xenoliths. John Wiley and Sons, Chichester, United Kingdom. 1987.
    [60] Ortoleva P, Merino E, Moore C, Chadam J. Geochemical self-organization, I: reaction-transport feedbacks and modeling approach. American Journal of Science, 1987, 287(10): 979–1007.
    [61] O’Reilly S Y, and Griffin W L. 4D lithosphere mapping: Methodology and examples, Tectonophysics, 1996, 262(1-4): 3-18.
    [62] Patino Douce A E, Beard J S. H2O loss from hydrous melts during fluid absent piston cylinder experiments. American Mineralogist, 1994, 79: 585-588.
    [63] Pearson D G. The age of continental roots. Lithos, 1999,48: 171-194
    [64] Poli S, Schmidt M W. The high-pressure stability of hydrous phase in orogenic belts: an experimental approach on eclogite-forming processes. Tectonophysics, 1997, 273(1-2): 169-184.
    [65] Prouteau G, Scaillet B, Pichavant M, Maury Rene. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature, 2001, 410(6825): 197-200.
    [66] Quick J E. The origin and significance of large, tabular dunite bodies in the Trinity peridotite, northern California. Contrib. Mineral. Petrol., 1982, 78(4): 413-422.
    [67] Rapp R P, Waston E B, Miller C F. Partial Melting of Amphibolite/ Eclogite and the Origin of Archean Trondhjemites and Tonalite. Precambrian Research, 1991, 51(1-4):1-25.
    [68] Rapp R P, Waston E B. Dehydration melting of a metabasalt at 8-32kbar: implications for continental growth and crust-mantle recycling. Journal of Petrology, 1995, 36(4): 891-931.
    [69] Rapp R P, Shimizu N, Norman M D, Applegate G S. Reaction between slab-derived melt s and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chemical Geology, 1999, 160(4): 335-356.
    [70] Rapp R P, Shimizu N, Norman M D. Growth of early continental crust by partial melting of eclogite. Nature, 2003, 425(6958): 605-609.
    [71] Rollinson H.. Chromite in the mantle section of the Oman ophiolite: A new genetic model. Isl. Arc., 2005, 14: 542-550.
    [72] Rudnick R L. Xenolith-Samples of the lower continental crust. In: Fountain D M, Arculus R and Kay R W (eds). Continental Lower Crust. Elsevier Sci., 1992, 269-316.
    [73] Schiano P, Clocchiatti R, Shimizu N, Maury R C, Jochum K P, Hofmann A W. Hydrous,silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas. Nature, 1995, 377(6550): 595-600.
    [74] Sen C, Dunn T. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implication for the origin of adakites. Contrib. Miner. Petrol., 1994, 117(4): 394-409.
    [75] Spiegelman M, Kelemen P B, Aharonov E. Causes and consequences of flow organization during melt transport: the reactive infiltration instability in compactible media. Journal of Geophysical Research, 2001, 106(B2): 2061–2077.
    [76] Spiegelman M, Kelemen PB. Extreme chemical variability as a consequence of channelized melt transport. Geochemistry, Geophysics, Geosystems, 2003, 4(7): DOI 10.1029/2002GC000336.
    [77] Stewart K, Rogers N. Mantle plume and lithosphere contributions to basalts from southern Ethiopia. Earth and Planetary Science Letters, 1996, 139(1-2): 195-211.
    [78] Stolz A Z, Jochum K P, Spettel B, Hofmann A W. Fluid- and melt-related enrichment in the subarc mantle: evidence from Nb/ Ta variations in island-arc basalts. Geology, 1996, 24: 587-590.
    [79] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins. Geological Society Special Publication, 1989, 42: 313-345.
    [80] Toramaru, A, Fujii N. Connectivity of melt phase in a partially molten peridotite. Journal of Geophysical Research, 1986, 91(B9): 9239-9252.
    [81] Tomkeieff S I. Dictionary of Petrology. Indianapolis: John Wiley &Sons Ltd, 1983.
    [82] Wang Q, Xu J F, Zhao Z H, Bao Z W, Xu W, Xiong X L. Cretaceous high-potassium intrusive rocks in the Yueshan-Hongzhen area of east China: adakites in an extensional tectonic regime within a continent. Geochemical Journal, 2004, 38(5): 417-434.
    [83] Wang Q, McDermott F, Xu J F, Bellon H, Zhu Y T. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower-crustal melting in an intracontinental setting. Geology, 2005, 33: 465-468.
    [84] Xu J F, Wang Q, Yu X Y. Geochemistry of high-Mg andesite and adakitic andesite from the Sanchazi block of the Mian-Lue ophiolitic melange in the Qinling Mountains, central China: Evidence of partial melting of the subducted Paleo-Tethyan crust and its implication. Geochemical Journal, 2000, 34(5): 359-377.
    [85] Xu J F, Shinjo R, Defant M J, Wang Q, Rapp R P. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology, 2002, 30: 1111-1114.
    [86] Xu W L, Wang D Y, Liu X C, Wang Q H, Lin J Q. Discovery of eclogite inclusions andits geological significance in early Jurassic intrusive complex in Xuzhou-northern Anhui, eastern China. Chinese Science Bulletin, 2002, 47:1212-1216.
    [87] Xu W L, Gao S, Wang Q H, Wang D Y, Liu Y S, Mesozoic crustal thickening of the eastern North China Craton: Evidence from eclogite xenoliths and petrologic implications. Geology, 2006, 34(9): 721-724.
    [88] Xu W L, Hergt, J M, Gao S, Pei F P, Wang W, Yang D B. Interaction of adakitic melt-peridotite: implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton. Earth and Planetary Science Letters, 2008, 265(1-2): 123-137.
    [89] Xu X S, O’Reilly S Y, Zhou X M, Griffin W L. A xenolith-derived geotherm and the crust-mantle boundary at Qilin, southeastern China. Lithos, 1996, 38:41-62.
    [90] Xu X S, O’Reilly S Y, Griffin W L, Zhou X M. The nature of the Cenozoic lithosphere beneath Nushan , east central China. In: Fliwer M E J, Chung S L,Lon C H, et al. Amer. Geophysical Union Geodynamics Series,27,Mantle Dynamics and Plate Interactions in East Asia, 1998, 167-196.
    [91] Xu X S, O’Reilly S Y, Griffin W L, Zhou X M. Genesis of young lithospheric mantle in southeastern China: an LAM-ICPMS trace element study. Journal of Petrology, 2000, 41(1): 111-148.
    [92] Xu Y G, Mercier J C , Menzies M A , Ross J V, Harte B, Lin C, Shi L. K-rich glass-bearing wehrlite xenoliths from Yitong , Northeastern China : petrological and chemical evidence for mantle metasomatism. Contrib. Mineral. Petrol., 1996, 125(4): 406-420.
    [93] Xu Y G. Thermo-tectonic destruction of the Archaean lithosphence, keel beneath the Sino-Korean Crton in China: evidence, timing and mechanism. Physics and Chemistry of the Earth, 2001, 26A: 747-757.
    [94] Yang W, Li S G. Geochronology and geochemistry of the Mesozoic volcanic rocks in western Liaoning: implications for lithospheric thinning of the North China Craton. Lithos, 2008, in press.
    [95] Yaxley G M, Green D H. Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust. Schweiz. Mineral. Petrogr. Mitt., 1998, 78: 243–255.
    [96] Yaxley G M. Experimental study of the phase and melting relations of homogeneous basalt+peridotite mixtures and implications for the petrogenesis of flood basalts. Contrib. Mineral. Petrol.,2000, 139(3): 326–338
    [97] Yogodzinski G M, Volynets O N, Koloskov A V, Seliverstov N I, Matvenkov V V. Magnesian andesites and the subduction component in a strongly calc-alkaline series at Piip Volcano, far western Aleutians. Journal of Petrology, 1994, 35(1): 163-204.
    [98] Yogodzinski G M, Kay R W, Volynets O N, Koloskov A V, Kay S M. Magnesianandesite in the western Aleutian Komandorsky region: implication for slab melting and processes in the mantle wedge. Geol. Soc. Am. Bull., 1995, 107: 505-519.
    [99] Zhang H F. Transformation of lithospheric mantle through peridotite-melt reaction: A case of Sino-Korean craton. Earth and Planetary Science Letters, 2005, 237(3-4): 768-780.
    [100] Zhang H F, Menzies M A, Gurney J, Zhou X H. Cratonic peridotites and silica-rich melts: diopside-enstatite relationships in polymict xenoliths, Kaapvaal , South Africa. Geochimica et Cosmochimica Acta, 2001, 65(19): 3365-3377.
    [101] Zindler A , Hart S R. Chemical geodynamics. Ann Rev Earth Planet Sci , 1986, 14: 493-571
    [102] Zhou M F, Robinson P T, Malpas J, Li Zijin. Podiform chromitites in Luobusa ophiolite ( Southern Tibet ) : implications for melt-rock interaction and chromite segregation in the upper mantle. Journal of Petrology, 1996, 37(1): 3-21.
    [103] Zhou M F , Robinson P T, Malpas J, Aitchison J, Sun M, Bai W J, Hu X F, Yang J S. Melt/mantle interaction and melt evolution in the Sartohay high-Al chromite deposit s of the Dalabute ophiolite (NW China). Journal of Asian Earth Sciences, 2001, 19(4): 517-534.
    [104] 常丽华, 陈曼云, 鑫巍, 李世超, 于介江. 透明矿物薄片鉴定手册. 北京: 地质出版社, 2006, 17-18.
    [105] 陈立辉, 周新华. 地幔富硅交代与大陆岩石圈的演化. 地学前缘, 2001, 8(3): 141-146.
    [106] 陈义贤,陈文寄, 周新华, 李真济. 辽西及邻区中生代火山岩-年代学、地球化学和构造背景. 北京: 地震出版社, 1997.
    [107] 邓晋福, 莫宣学, 赵海玲, 罗照华, 杜杨松. 中国东部岩石圈根/去根作用与大陆 “活化”. 现代地质, 1994, 8(3): 349-356.
    [108] 邓晋福, 赵海玲, 莫宣学. 中国大陆根-柱构造-大陆动力学的钥匙. 北京: 地质出版社, 1996.
    [109] 邓晋福, 赵国春, 赵海玲, 罗照华, 戴圣潜, 李凯明. 中国东部燕山期火成岩构造组合与造山-深部过程. 地质论评, 2000, 46(1): 41-48.
    [110] 董申保, 田伟. 埃达克岩的原义、特征与成因. 地学前缘, 2004, 11(4): 585-594.
    [111] 董建华, 陈斌, 周凌, 太行山南段符山岩体的成因: 岩石学和地球化学证据. 自然科学进展, 2003, 13(7): 767-774.
    [112] 河北省地质矿产局. 河北省北京市天津市区域地质志. 北京: 地质出版社, 1989.
    [113] 黄福生, 薛绥洲. 邯邢侵入体中幔源超镁铁质岩包体的发现及其矿物地球化学特征. 岩石学报, 1990(4): 40-45.
    [114] 金振民. 我国高温高压实验研究进展和展望. 地球物理学报, 1997, 40(增刊): 70-81.
    [115] 李建平, Provost A, Kornprobst J. 橄榄岩中尖晶石化学成分分带的机理及其地质意义. 矿物学报, 1997, 17(2): 156-163.
    [116] 刘光鼎, 杨小毛, 魏蕾. 当前地球物理学发展中的基本问题. 科学通报, 1992, 37(1): 31-34.
    [117] 刘强, 金振民. Piston-Cylinder 高温高压实验装置及在壳幔动力学研究中的应用. 2006, 25(5): 8-14.
    [118] 柳小明. 华北克拉通中生代壳幔交换作用的地球化学研究. 西北大学博士学位论文, 2004.
    [119] 路凤香, 郑建平, 李伍平, 陈美华, 成中梅. 中国东部显生宙地幔演化的主要样式: “蘑茹云”模型. 地学前缘, 2000, 7(1): 97-107.
    [120] 罗照华, 邓晋福, 韩秀卿. 太行山造山带岩浆活动及其造山过程反演. 北京: 地质出版社, 1999.
    [121] 马麦宁, 白武明. 高温高压实验弹性波速研究及其地球动力学意义. 地球物理学进展, 1999, 14(1): 40-55.
    [122] 牛树银, 陈路, 许传诗. 太行山区地壳演化及成矿规律. 北京: 地震出版社, 1994.
    [123] 潘兆橹. 结晶学及矿物学(下册). 北京: 地质出版社, 1994, 77-84.
    [124] 彭头平, 王岳军, 范蔚茗, 郭锋, 彭冰霞. 南太行山闪长岩的SHRIMP锆石U-Pb年龄及岩石成因研究. 岩石学报, 2004, 20(5): 1253-1262.
    [125] 宋新宇, 冯钟燕. 太行山南段中生代侵入体微量元素地球化学及岩浆源区性质探讨. 华北地质矿产杂志, 1999, 14(1): 1-17.
    [126] 王仁. 地球动力学的历史和近期发展. 地球物理学进展, 1996, 11(1): 1-11.
    [127] 王晓蕊. 辽西早白垩世四合屯组火山岩地球化学研究. 西北大学硕士学位论文, 2005.
    [128] 王焰, 张旗, 钱青. 埃达克岩(adakite)的地球化学特征及其构造意义. 地质科学, 2000, 35(2): 251-256.
    [129] 王绳祖. 高温高压岩石力学-历史、现状、展望. 地球物理学进展, 1995, 10(4): 1-31.
    [130] 吴福元, 孙德有. 中国东部中生代岩浆作用与岩石圈减薄. 长春科技大学学报, 1999, 29 (4): 313-318.
    [131] 吴福元, 孙德有, 张广良, 等. 论燕山运动的深部地球动力学本质. 高校地质学报, 2000, 6:379-388.
    [132] 吴福元, 葛文春, 孙德有,等. 中国东部岩石圈减薄研究中的几个问题. 地学前缘, 2003, 10(3): 51-60.
    [133] 谢鸿森. 地球深部物质科学导论. 北京: 科学出版社, 1997.
    [134] 徐义刚. 上地幔熔体岩石相互作用与大陆地幔演化. 地学前缘, 1998, 5 (增刊): 76-85.
    [135] 徐义刚. 岩石圈的热-机械侵蚀和化学侵蚀与岩石圈减薄. 矿物岩石地球化学通报, 1999, 18(1): 1-5.
    [136] 许文良, 高燕. 邯邢地区燕山期侵入岩系的稀土元素特征. 岩石学报, 1990(2): 43-50.
    [137] 许文良, 林景仟. 河北邯邢地区角闪闪长岩中地幔纯橄岩包体的发现与研究. 地质学报, 1991, 65(1): 33-41.
    [138] 许文良, 郑常青, 王冬艳. 辽西中生代粗面玄武岩中地幔和下地壳捕虏体的发现及其地质意义. 地质论评, 1999 , 45(增刊): 442-449.
    [139] 许文良, 王冬艳, 王嗣敏. 中国东部中新生代火山作用的 PTtC 模型与岩石圈演化. 长春科技大学学报, 2000, 30(4): 329-335.
    [140] 许文良, 王冬艳, 王清海, 林景仟. 鲁西中生代闪长岩中两类幔源捕虏体的岩石学和地球化学. 岩石学报, 2003a, 19(4): 623-636.
    [141] 许文良, 王冬艳, 高山, 林景仟. 鲁西中生代金岭闪长岩中纯橄岩和辉石岩包体的发现及意义. 科学通报, 2003b, 48(8): 863-868.
    [142] 许文良, 王冬艳, 王清海, 高山, 林景仟. 鲁西纯橄岩捕虏体中富硅质熔(流)体的交代作用: 对中生代岩石圈地幔减薄的意义. 地质学报, 2004, 78(1): 72-80.
    [143] 杨承海, 许文良, 杨德彬, 刘长春, 柳小明, 胡兆初. 鲁西中生代高 Mg 闪长岩的成因: 年代学与岩石地球化学证据. 地球科学, 2006, 31(1): 81-92.
    [144] 杨斌. 高温高压无机合成装置的调试与实验. 吉林大学硕士学位论文, 2007.
    [145] 张寿广. 当前变质地质学研究的几个重要前缘和热点. 国外前寒武纪地质, 1994, 66(2): 1-5.
    [146] 张本仁. 造山带地球化学研究的理论构想与实践. 地球科学, 1999, 24(3): 221-227.
    [147] 张宏福. 橄榄岩-熔体的相互作用: 岩石圈地幔组成转变的重要方式. 地学前缘, 2006, 13(2): 65-75.
    [148] 张瑾, 张宏福, 英基丰, 汤艳杰. 华北晚中生代中基性侵入岩中橄榄岩捕虏体是岩石圈地幔直接样品?岩石学报, 2005, 21(6): 1559-1568.
    [149] 张旗, 钱青, 王二七, 王焰, 赵太平, 郝杰, 郭光军. 燕山中晚期的中国东部高原: 埃达克岩的启示. 地质科学, 2001a, 36: 248-255.
    [150] 张旗, 王焰, 钱青, 杨进辉, 王元龙, 赵大平, 郭光军. 中国东部燕山期埃达克岩的特征及其构造-成矿意义. 岩石学报, 2001b, 17, 236-244.
    [151] 张旗, 王焰, 刘红涛, 王元龙, 李之彤. 中国埃达克岩的时空分布及其形成背景附:《国内关于埃达克岩的争论》. 地学前缘, 2003, 10(4): 385-400.
    [152] 张旗, 许继峰, 王焰, 肖龙, 刘红涛, 王元龙. 埃达克岩的多样性. 地质通报, 2004, 23(9-10): 959-965.
    [153] 郑建平. 中国东部地幔置换作用与中新生代岩石圈减薄. 武汉: 中国地质大学出版社, 1999, 6 47.
    [154] 郑建平, 路凤香, O’Reilly S Y, Griffin W L, 张明. 华北东部地幔改造作用和置换作用: 单斜辉石激光探针研究. 中国科学 D 辑, 2000, 30(4): 373-382.
    [155] 支霞臣, 郑永飞, 杜安道, 孙亚莉. 苏皖地区新生代玄武岩和幔源橄榄岩包体的比值. 科学通报, 1996, 41(3): 245-247.
    [156] 周金城, 王孝磊. 实验及理论岩石学. 北京: 地质出版社, 2005.
    [157] 周新华. 壳-幔深部化学地球动力学与大陆岩石圈研究. 见: 郑永飞主编. 化学地球动力学, 北京: 科学出版社,1999, 15-27
    [158] 周新华, 张国辉, 杨进辉, 陈文寄, 孙敏. 华北克拉通北缘晚中生代火山岩 Sr-Nd-Pb同位素填图及其构造意义. 地球化学, 2001, 30(1): 10-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700