用户名: 密码: 验证码:
电化学阻抗图谱法TiO_2薄膜光电极的多相光催化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实验采用PARSTAT2273电化学测试系统,测定并分析了溶胶-凝胶法制备的TiO2薄膜光电极在氨氮溶液中的电化学阻抗谱。从体系电化学阻抗变化角度,讨论光照与否和外加偏压对TiO2光电催化过程的影响。并在氨氮光电催化降解实验中,得到和电化学阻抗实验一致的结论,外加阳极偏压0.1V时,TiO2光电催化效率最高。选定模型R(C(R(RQ)))为本实验体系最合理的等效电路模型。并计算出半导体的空间电荷层宽度W、平带电位Фfb、半导体载流子浓度ND等参数。
     本论文还讨论了TiO2光催化还原氮气合成氨的实验。在pH=3的条件下,考察了反应时间、溶液浓度、阳极偏压和鼓入不同载气时对氨氮浓度变化的影响。结果表明,在偏压0.1V通入空气60min时,氨氮浓度增加最多,效率达6.7%。
The Electrochemistry Impedance Spectroscopy (EIS) of the thin TiO2 photoelectrode prepared by sol-gel processing in Ammonia system was measured and analyzed by a PARSTAT2273. The influence of light and bias on the photoelectro-catalytic process was discussed with the EIS change. The results of experiments of ammonia degradation were identical to the former conclusions and the photocatalytic efficiency is the highest with bias potential 0.1V. The Equivalent Circuit Model R(C(R(RQ))) was the better one. The parameters of the width of space charge layer, flat band potential, and density of donors of the semiconductor were calculated.
     Photocatalytic reduction of molecular nitrogen to ammonia on TiO2 was also studied in this paper. When pH was 3, the effect of different reaction condition, such as reaction time, solution concentration, applied bias and pumping into different kinds of gas, on increasing of ammonia concentration was compared. The results showed that the ammonia concentration increased most and the efficiency was 6.7% in the condition of applied bias 0.1V and pumping into air after 60 minutes.
引文
[1] 刘守新,刘鸿.光催化及光电催化基础与应用[M].化学工业出版社,2005:30-32
    [2]Micha Tomkiewicz.Scaling Properties in Photocatalysis[J].Catalysis Today , 2000 ,58:151-159
    [3]Hoffman M N,Martin S T,et al.Enviromental aplications of Semiconductor Photocatalysis[J].Chemical Review,1995,95:69-76
    [4]蒋展鹏,王海燕,杨宏伟. 电助光催化技术研究进展[J].化学进展,2005,17(4):622-630
    [5]阿伦.J.巴德,拉里.R.福克纳.电化学方法原理和应用[M].绍元华等译第二版.北京:化学工业出版社,2005:520-521
    [6]冷文华,张莉,成少安,等. 附载二氧化钛光催化降解水中对氯苯胺(PCA)[J].环境科学,2000,21(6):46-50
    [7]Franke R,Franke C.Model reactor for Photocatalytic degradation of persistent chemicals in ponds and wastewater[J].Chemosphere,1999,39(6):2651-2659
    [8]Yamazaki S,Tsukamoto H,Arakik K,et al.Appl Catal B:Environ,2000,33(2):109-117
    [9]付宏祥,吕功煊,李树本.感光科学与化学,1999,15(1):39
    [10]刘守新,刘鸿.光催化及光电催化基础与应用[M].化学工业出版社,2005:260-272
    [11]吴季松.合理水价形成机制初探[J].中国水利,2001(3):17-19.
    [12]顾小红,黄种买,虞启义.城市污水再用于火电厂循环冷却水的研究[J].华东电力, 2003,31(2):14-16.
    [13]周本省.循环冷却水系统中微生物引起腐蚀和黏泥的控制[J].腐蚀与防护2002,23(7):301-304.
    [14]苟晓东,黄种买,虞启义.城市二级污水回用作电厂循环冷却水铜管腐蚀研究[J].化工进展,2004,23(3):304-306.
    [15]周彤,鲍宪枝,郭晓,等.城市污水回用于循环冷却水时氨氮去除[J].工业用水与废水,2000(6):9-11.
    [16]林根仙,何蓉,郭俊文.氨氮对循环冷却水系统的危害与对策[J]. 工业水处理,2006,26(5):82-84.
    [17]丁思慧.用物化法对高浓度氨氮废水的前期处理[J].安徽化工,2000,106(4):42-43.
    [18]吴方同,等.吹脱法去除城市垃圾填埋场渗滤液中的氨氮[J].给水排水,2001,27(6):20-24.
    [19]王宗平,等.垃圾渗滤液预处理氨吹脱[J].给水排水,2001,27(6):15-19.
    [20]杨海明,柳丽芬,等.Pt/TiO2/ZSM-5 在日光下氧化氨氮的研究[J].环境科学与技术,2006,29(10):1-3
    [21]Junichi Nemoto, Norihiko Gokan. Photodecomposition of ammonia to dinitrogen and dihydrogen on platinized TiO2 nanoparticules in an aqueous solution[J].Journal of Photochemistry and Photobiology A: Chemistry, 2007 (185) :295–300
    [22]曹楚南,张鉴清.电化学阻抗谱导论[M].科学出版社,2002.iii-VIII
    [23]姚晓斌,马颖,姚建年.贵金属对 TiO2 悬浮液光照过程中 H2O2 形成的促进作用[J].感光科学与光化学,1999, 17(2): 159-163
    [24]孙福侠,吴鸣,王红,等.纳米 TiO2 光催化降解苯酚的动力学研究[J].催化学报,1999,20(3): 301-304
    [25]王娅娟,李斌,等.溶胶-凝胶法制备 TiO2 玻璃膜和光催化降解玫瑰红 B 的研究[J].应用化学,2001,18(1):36-39
    [26]钱延龙,陈新滋.金属有机化学与催化[M].北京:化学工业出版社,1997,30-35
    [27]张彭义,余刚,蒋展鹏.光活性二氧化钛膜的制备与应用[J].环境科学进展,1998,6(5): 50-56
    [28]张彭义,余刚,蒋展鹏.光活性二氧化钛膜的制备与应用[J].环境科学进展,1998, 6(5): 50-56
    [29]Sopyan I, Watanabe M, Murasawa S, et al. A film-type photocatalyst incorporating highly active TiO2 power and fluororesin binder:photocatalytic activity and long-term stability[J]. Electroanalytical chem,1996, 415(1-2):183-186
    [30]李宣东,李垚,等.固定态 TiO2 薄膜制备及光催化氧化性能研究[J].哈尔滨工业大学学 报,2004,36(1):79-83
    [31]孔海霞,孙彦平,武爱莲.TiO2 薄膜光电极能带结构和催化活性的初探[J].感光科学与光化学,2004,22(5):327-331
    [32]王颖莉,孙彦平.通入空气对光催化降解氨氮废水的影响[J].煤化工,2006, 124(6):34-36
    [33]史美伦编著.交流阻抗谱原理及应用(AC Impedance Spectroscopy Principles and Applications)[M].北京:国防工业出版社,2001: 52-62
    [34]Gomes W P and Vanmaekelbergh D. Impedance spectroscopy at semiconductor electrodes; review and recent developments[J].Electrochim. Acta, 1996, 41:967-973
    [35] Riley D J and Tull E J. Potential modulated absorbance spectroscopy: an investigation of the potential distribution at a CdS nanoparticle modified electrode[J]. J. Electroanalytical Chemistry, 2001, 504: 45-51
    [36]冷文华,张昭,成少安,等.直接热氧化法制备氧化钛薄膜电极的研究[J].化学物理学报,2001,14(6):705-710
    [37]查全性,等.电极过程动力学导论[M].北京:科学出版社,第三版,2002:382-392
    [38]C.M.Rangel,T.M.Silva and M.da Cunha Belo.Semicondunctor electrochemistry approach to passivity and stress corrosion cracking susceptibility of strainless steels[J].Electrochumica Acta ,2005 (50):5076-5082
    [39]孙彦平.交流阻抗法 TiO2 半导体光电催化特征表征:[硕士学位论文].山西太原:太原理工大学应用化学专业,2002
    [40]A.Sclafani, V.Augugliaro and M.Schiavello, J.Electrochem.Soc, 130(1983)734.
    [41]A.Fujishima and K.Honda, Nature, Lond.238, 37(1972).
    [42]H.P.Maruska and A.K.Ghosh, Sol.Energy 20,443(1978).
    [43]J.C.Hemminger, R.Carr and G.A.Somorjai, Chem.Phys.Lett.57, 100(1978).
    [44]H.Van Damme and W.K.Hall,J.Am.chem.Soc.101,4373(1979).
    [45]T.J, Wiseman, Characterization of Powder Surfaces (G.D.Parfitt and K.S.W.Sing,eds.)P.159.Academic Press, New York (1976).
    [46]F.T.Wagner, S.Ferrer and G.A.Somorjai, Surf.Sci.101, 462(1980).
    [47]H.Mozzanega, Thesis, C.N.A.M., Lyon (1975).
    [48]G.N.Schrauzer and T.D.Guth, J.Am.Chem.Soc, 99(1977)7189
    [49]G.N.Schrauzer in D.Banerjea (Ed.), Coordination Chemistry, Vol.20, Pergamon Press, Oxford, (1980)149.
    [50]V.Augugliaro, A.Lauricella, L.Rizzuti, M.Schiavello and A.Sclafani, Int.J.Hydrogen Energy, 7(1982)845.
    [51]V.Augugliaro, F.D’Alba, L.Rizzuti, M.Schiavello and A.Sclafani, Int.J.Hydrogen Energy, 7(1982)851.
    [52] S.Grayer, M.Halmann.J.Electroanal.Chem. 170(1984)363-368
    [53] Schrauzer G.N.and Guth T.D., J.Am.Chem.Soc. 99(1977) 7189.
    [54]Jiaqing Li, Luoping Li, Lei Zheng, Yuezhong Xian, Litong Jin. Electrochimica Acta 2006, 51 (6): 4942–4949
    [55]Grayer, S, Halmann, M. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1984,170:363-368

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700