用户名: 密码: 验证码:
以邻菲咯啉和多取代苯甲酸为配体的配合物体系中超分子作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代化学已经认识到通过分子间非共价相互作用,个体分子可以自发形成有序结构,该结构有单独分子不具备的功能和性质。超分子化学包括了对分子间相互作用和分子有序聚集体的形成过程即自组装的研究。分子间的相互作用是以非共价键形式存在的弱相互作用,如氢键、疏水作用、兀一兀芳环堆积等,被统称为超分子作用。超分子作用多呈现加和与协同性,并具有一定的方向性和选择性,其总的结合力不亚于化学键,可以有效构筑功能化的超分子体系。研究超分子作用的本质,掌握超分子体系构筑的规律,对于设计和开发具有光电性质、生物模拟等功能的新型材料物质有重要的意义。本论文研究金属配合物体系中的超分子作用,重点研究芳环堆积作用。在Hunter-Sanders建立的理论模型基础上,通过实验科学方法考察苯环上取代基团对芳环堆积作用的影响,以探索芳环堆积的本质。
     本论文选择邻菲咯啉为中性配体,2,4-二羟基苯甲酸,2,6-二羟基苯甲酸,4-氯-2-羟基苯甲酸为阴离子配体,以过渡金属Zn~(Ⅱ)、Mn~(Ⅱ)和主族金属Sr~(Ⅱ)为中心金属离子,合成了五个未见报道的新配合物体系:[Zn(Ⅱ)(C_7H_5O_4)(C_(12)H_8N_2)_2(H_2O)]·H_2O·(C_7H_5O_4)(Ⅰ),[Mn(Ⅱ)(C_7H_5O_4)(C_(12)H_8N_2)_2(H_2O)]·H_2O·(C_7H_5O_4)(Ⅱ),[Mn(C_(12)H_8N_2)_2(Cl)_2]·0.5(C_7H_6O_4)·2H_2O(Ⅲ),[Sr(Ⅱ)(C_7H_5O_4)_2(C_(12)H_8N_2)_2(H_2O)_2](Ⅳ),[Zn(Ⅱ)(C_7H_4ClO_3)_2(C_(12)H_8N_2)(H_2O)](Ⅴ)用X射线单晶衍射测定了单晶结构。通过结构分析得到了与芳环堆积作用和配合物体系结构相关的有用信息。
     比较多取代的苯甲酸配体形成芳环堆积的情况发现,(Ⅴ)中,4-氯-2-羟基苯甲酸配体之间存在芳环堆积作用,其余配合物体系中多取代的苯甲酸配体之间不存在芳环堆积作用。文献中以单羟基取代的苯甲酸为配体合成的同类结构中,没有发现单取代苯甲酸与邻菲咯啉配体之间存在芳环堆积作用。本论文结构(Ⅰ)~(Ⅱ)和(Ⅴ)中,发现游离的2,4-二羟基苯甲酸阴离子、4-氯-2-羟基苯甲酸配体和邻菲咯啉配体之间存在芳环堆积作用,参照Hunter-Sanders模型,增加的取代基团增强了对π电子云的拉电子作用,苯环上π电子云密度减小,有利于形成芳环堆积作用。
     (Ⅰ)和(Ⅱ)结构相似,体系中过渡金属不同,这样结构相似的体系有利于考察金属对芳环堆积作用的影响。结构分析表明,这两个体系中虽然过渡金属不同,但对芳环堆积作用的影响不明显。
     本文通过对(Ⅰ)~(Ⅴ)的配合物体系的结构分析,讨论了超分子作用构筑配合物体系的多维结构的情况:通过分子间氢键、C-H…π和芳环堆积等作用,(Ⅰ)~(Ⅲ)的配合物体系中客体游离分子稳定填充在主体分子围成的孔洞或通道中;(Ⅳ)~(Ⅴ)的配合物体系中从一维到三维的超分子结构体现了分子自组装倾向于最大化利用空间紧密堆积的特点。
Modern chemistry has realized that two or more chemical species could be held together by intermolecular interactions into orderly structure with special properties and functions. Supra-molecular chemistry includes the study of intermolecular interaction and molecular self-assemble. The non-covalent intermolecular interactions, such as hydrogen bonding, hydro-phoblic interaction,π-πinteraction, etc., are called supra-molecular interaction. The cooperation between supra-molecular interactions forms strong force with direction and strength which effectively to construct functionalized supra-molecular structure.
     Studying on the nature of supra-molecular interaction and mastering the rule of molecular self-assemble are crucial to design and develop new materials with optical or electro-properties and biological-functional materials. This paper studies on intermolecular interactions, especially aromatic stacking interaction. Based on Hunter-Sanders' model, we observed the influence of multiple substituted group on benzene ring toward aromatic interaction in order to seek the nature of aromatic stacking interaction.
     In this paper, 5 unreported complexes (Ⅰ)-(Ⅴ) were synthesized in our lab, with 1,10-phenanthlorine as neutral ligand, 2,4-dihydroxybenzoate, 2,6-dihydroxybenzoate and 4-chlorosalicylate as anion ligands, and Zn~Ⅱ、Mn~Ⅱ、Sr~Ⅱas center metal ions:(Ⅳ), [Zn(Ⅱ)(C_7H_4ClO_3)_2(C_(12)H_8N_2)(H_2O)] (V), their three-dimensional structures were determined by single X-ray diffraction method. Useful information about aromatic stacking interaction and their supra-molecular structures was obtained.
     Studying the behavior of different multiple-substituted benzoate ligands involved in aromatic stacking, we found that: aromatic stacking interaction existed between 4-chlorosalicylate ligands in (Ⅴ). In related literatures, aromatic stacking interaction was not found between phenanthlorine ligand and mono-substituted benzoate ligand or anion. In (Ⅰ)-(Ⅱ) and (Ⅴ), aromatic stacking interaction between phenanthlorine ligand and multiple-substituted benzoate ligand or anion was found. Based on Hunter-Sanders' model, the addition of substituted group was tend to multiply the polarity of benzene rings and deduce the density ofπelectrons, which was helpful to form aromatic stacking interaction.
     Although the metal ion differed, the supra-molecular structure of (Ⅰ) and (Ⅱ) was similar which could be used to observe the influence of metal ions toward aromatic stacking. But no obvious distinction was observed.
     In this paper, we also discussed the role of intermolecular interactions played in building the architecture structures of (Ⅰ)-(Ⅴ): though intermolecular hydrogen bonding, C-H…πand aromatic stacking interaction, in (Ⅰ)-(Ⅲ), guest molecules steadily filled in holes or channels formed by host molecules; the organization of 1D to 3D supra-molecular structure founded in (Ⅳ)-(Ⅴ) showed that: molecular self-assemble are prone to maximize the use of space and adopt the most close stacking mode.
引文
[1]Jean-Marie Lehn, 超分子化学——概念和展望.第一版,沈兴海 译.北京: 北京大学出版社,2002.1-3.
    
    [2] Leininger S, Olenyuk B, Stang P J. Self-assembly of discrete cyclic nanostructuresmediated by transition metals. Chem. Chem. Rev., 2000(100): 853-907.
    
    [3] Swiegers G F, Malefetse T J, New self-assembled structural motifs in coordinationchemistry. Chem. Rev. 2000, 100, 3483-3537.
    
    [4] Moulton B, Zaworotko M J. From Molecules to Crystal Engineering:Supramolecular Isomerism and Polymorphism in Network Solids. Chem. Rev.,2001(101): 1629-1658.
    
    [5] Janiak C. Engineering coordination polymers towards applications DaltonTrans., 2003, 2781-2804.
    
    [6] James S. Metal-organic frameworks. Chem. Soc. Rev., 2003(32): 276-288.
    
    [7] Khlobystov A N, Blake A J, Champness N R, Lemenovskii D A, Majouga A G,Zyk N V, Schroder M. Supramolecular design of one-dimensional coordinationpolymers based on silver(l) complexes of aromatic nitrogen-donor ligands.Coord. Chem. Rev., 2001(222): 155-192.
    
    [8] Brammer L. Crystal Design: Structure and Function, in: Desiraju G. R, Ed.Perspectives in Supramolecular Chemistry. Vol. 7. Chichester: Wiley, 2003.1-75.
    [9] Beatty A M. Hydrogen bonded networks of coordination complexes. Cryst. Eng. Comm., 2001(3): 243-255.
    [10] Braga D, Grepioni F, Desiraju G R. Crystal Engineering and Organometallic Architecture. Chem.Rev., 1998(98): 1375-1406.
    [11] MacDonald J C, Whitesides G M. Solid-State Structures of Hydrogen-Bonded Tapes Based on Cyclic Secondary Diamides. Chem. Rev. 1994(94): 2383-2420.
    [12] Cantrill S J, Fyfe M C, Raymo E M, Stoddart J F. in: Tsoucaris G, Ed. Current Challenges on Large Supramolecular Assemblies. Netherlands: KIuwer, 1999. 17.
    
    [13] Ward M D, Russell V A. in: Michl J, Ed.Molecular Chemistry. Netherlands: Kluwer: 1999. 397.
    
    [14] Aakeroy C B. Crystal Engineering: Strategies and Architectures. Acta Crystallogr., Sect. B: Struct. Sci., 1997(53): 569-586.
    [15] Desiraju G. R. Hydrogen bridges in crystal engineering: interactions without borders. Acc. Chem. Res., 2002(35): 565-573.
    [16] Hosseini M W. Reflexion on molecular tectonics. CrystEngComm, 2004(6): 318-322.
    [17] MacGillivray L R. On substituents, steering, and stacking to control properties of the organic solid state. Cryst. Eng. Comm, 2004(6): 77-78.
    [18] Brammer L. Developments in inorganic crystal engineering. Chem. Soc. Rev., 2004(33): 476-489.
    [19] Aakeroy C B, Beatty A M. Crystal engineering of hydrogen-bonded assemblies-a progress report. Aust. J. Chem., 2001(54): 409-421.
    [20] Caulder D L, Raymond K N. Supermolecules by Design. Acc. Chem. Res., 1999(32): 975-982.
    [21] Reinhoudt D N, Crego-Calama M. Synthesis Beyond the Molecule. Science, 2002(295): 2403-2407.
    [22] Lehn J M. Toward Self-Organization and Complex Matter. Science, 2002(295): 2400-2403.
    [23] Braga D, Maini L, Polito M, Grepioni F. Hydrogen Bonding Interactions Between Ions: A Powerful Tool in Molecular Crystal Engineering. Struct. Bond., 2004(111): 1-32.
    [24] Prins L J, Reinhoudt D N, Timmerman P, Noncovalent Synthesis Using Hydrogen Bonding. Angew. Chem. Int. Ed., 2001(40): 2382-2426.
    [25] Zimmerman S C, Corbin P S. Heteroaromatic modules for self-assembly using multiple hydrogen bonds. Struct. Bond., 2000(96): 63-94.
    [26] Deisenhofer J, Epp O, Miki K, Huber R, Michel H. Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3A resolution. Nature, 1985(318): 618-624.
    [27] Preston G M. Carroll T P, Guggino W B, Agre P. Appearance of Water Channels in Xenopus Oocytes Expressing Red Cell CHIP28 Protein. Science, 1992(256): 385-387.
    [28] K Murata, K Mitsuoka, T Hirai, T Walz, P Agrek, J B Heymann, A Engel, Y Fujiyoshi. Structural determinants of water permeation through aquaporin-1. Nature, 2000(407): 599-605.
    [29] Sui H, Han B G, Lee J K, Walian P, Jap B K. Structural basis of water-specific transport through the AQP1 water channel. Nature, 2001(414): 872-878.
    [30] Doyle D A, Morais Cabral J, Pfuetzner R A, Kuo A. Gulbis J M, Cohen S L, Chait B T, MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and sensitivity. Science, 1998(280): 69-77.
    [31] Jiang Y, Lee A, Chen J, Cadene M, Chait B T, MacKinnon R. The open pore conformation of potassium channels. Nature, 2002(417): 523-526.
    [32] Jiang Y, Ruta V, Chen J, Lee A, MacKinnon R. X-ray structure of a voltage-dependent K channel. Nature. 2003(422): 180-185.
    [33] Iiang Y, Lee A, Chen J, Cadene M, Chait B T, MacKinnon R. Crystal structure and mechanism of a calcium-gated potassium channel. Nature, 2002(417): 515-522.
    [34] Pedersen C J. Cyclic polyethers and their complexes with meatal salts. J. Am. Chem. Soc, 1967(89): 2495-2496.
    [35] Pedersen C J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 1967, 89, 7017-7036.
    
    [36]. Lehn J M. Cryptates: Inclusion Complexes of Macropolycyclic Receptor Molecules. Pure Appl. Chem. 1978(50): 871-892.
    
    [37] D. J. Cram, J. M. Cram, Host-guest chemistry-complexes between organic compounds simulate the substrate selectivity of enzymes. Science, 1974(183): 803-809.
    [38] Kornberg R D. Chromatin structure: a repeating unit of histones and DNAr. Science, 1974(184): 868-871.
    [39] Sayre M H, Tschnochner H, Kornberg R D. Reconstitution of transcription with five purified protein factors and RNA polymerase II from Saccharomyces cerevisiaer. J. Biol. Chem, 1992(267): 23376-23382.
    [40] Kim Y J, Bjorklund S, Li Y, Sayer M H, Kornberg R D. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell, 1994(77): 599-608.
    [41] Gnatt A L, Cramer P, Fu J, Bushnell D A, Kornberg R D. Structural basis of transcription:an RNA polymerase II elongation complex at 3.3(A) resolution.Science, 2001 (292): 1876-1882.
    [42] Wesrover K D, Bushnell D A, Kornberg R D. Structural basis of transcription: separation of RNA from DNA by RNA polymerase II. Science, 2004(303): 1014-1016
    
    
    [43] Westover K D, Bushnell D A, Kornberg R D. Structural basis of transcription: Nucleotide selection by rotation in the RNA polymerase II active center. Cell, 2004(119): 481-489.
    
    [44] Bushnell D A, Westover K D , Davis R E, Kornberg R D. Structural basis of transcription: An RNA polymerase II-TFIIB Cocrystal at 4.5 angstroms. Science, 2004(303): 983-988.
    
    [45]袁加程.浅析氢键对物质物理性质的影响.化学教学,2003(4):45-46.
    
    [46] Levitt M, Perutz M F. Aromatic rings as hydrogen bond acceptors. J. mol. Biol, 1988(201): 751-754.
    
    [47] Atwood J L, Hamada F, Robinson K D, Orr G W, Vincent R L. X-ray diffractionevidence for aromatic π hydrogen bonding to water. Nature, 1991(349): 683-684.
    
    [48] Crabtree R H, Siegbahn P E M, Eisenstein O, Rheingold A L, Koetzle T F. A newintermolecular interaction: unconventional hydrogen bonds with element-hydride bonds as proton acceptor. Acc. Chem. Res., 1996(29):348-354.
    
    [49] Xu W, Lough A J, Morris R H. Competition between NH…HIr Intramolecular Proton-Hydride Interactions and NH...FBF_3~- or NH…O Intermolecular Hydrogen Bonds Involving [IrH(2-thiazolidinethione)_4(PCy_3)](BF_4)_2 and Related Complexes. Inorg. Chem., 1995(35): 1549-1555.
    
    [50] Park S, Ramachandran R, Lough A J, Morris R H. A new type of intramolecular H…H…H interaction involving N-H…H(Ir)…H-N atoms. Crystal and molecular structure of [IrH(η~1-SC_5H_4NH)_2(η~2-SC_5H_4N)(PCy_3)]BF_4·0.72CH_2Cl_2. Chem. Soc. Chem. Commun., 1994: 2201-2202.
    
    [51] Lough A J, Park S, Ramachandran R, Morris R H. Switching On and Off a New Intramolecular Hydrogen-Hydrogen Interaction and the Heterolytic Splitting of Dihydrogen. Crystal and Molecular Structure of[Ir{H(.eta.l-SC_5H_4NH)}_2(PCy_3)_2]BF_4.cntdot.2.7CH_2Cl_2. J. Am. Chem. Soc. 1994(116): 8356-8357.
    
    [52] W. Yao, O. Eisenstein, R.H. Crabtree, Interactions between C…H and N…Hbonds and d~8 square planar metal complexes: hydrogen bonded or agostic?. Inorg. Chim. Acta., 1997(254): 105-111.
    
    [53]吴志坚,吴季怀.二氢键.大学化学.2006(21):33-41.
    
    [54] Kitaura K, Morokuma K. A new energy decompo- sition scheme for molecular interactions within the Hartree- Fock approximation.Int. J. Quatum. Chem., 1976(10):325-340
    
    [55] Saenger, W. Principles of Nucleic Acid Structure. New York: Springer-Verlag.,1984.132-140.
    
    [56] Burley S K, Petsko G. A. Aromatic-aromatic interaction: a mechanism of proteinstructure stabilization. Science, 1985(229): 23-28.
    
    [57] Hunter C A. The Role of Aromatic Interactions in Molecular Recognition. Chem.Soc. Rev., 1994(23): 101-109.
    
    [58] Lerman L S. Acridines bind to DNA by intercalation. J. Mol. Biol., 1961(3):18-30.
    
    [59] Coates G. W. Dunn A R, Henling L M. Ziller J W, Lobkovsky E B, Grubbs R H.Phenyl-Perfluorophenyl Stacking Interactions: Topochemical [2+2]Photodimerization and Photopolymerization of Olefinic Compounds. J. Am.Chem. Soc, 1998(120): 3641-3649.
    
    [60] Keller M, Lehmann C, Mutter M. Stereocontrol during the formation of 2-Cmono-arylated pseudo-prolines by aromatic stacking interaction. Tetrahedron,1999(55): 413-422.
    
    [61] Hunter C A, Sanders J K M. The Nature of π-π Interactions. J. Am. Chem. Soc.1990(112): 5525-5534.
    
    [62] Cozzi F, Cinquini M, Annuziata R, Siegel J S. Dominance of polar/.pi. overcharge-transfer effects in stacked phenyl interactions. J. Am. Chem. Soc,??1993(115): 5330-5331.
    
    [63] Christoph J, A critical account on π-π stacking in metal complexes with aromaticnitrogen-containing ligands. J. Chem. Soc, Dalton Trans., 2000, 3885-3896.
    
    [64] Sinnokrot M O, Sherrill C D. Substituent Effects in π-π Interactions: Sandwich and T-Shaped Configurations. J. Am. Chem. Soc, 2004(126): 7690-7697.
    
    [65]周公度.超分子结构化学.大学化学,2002(10):1-12.
    
    [66] Manabe K, Iimura S, Sun X M, Kobayashi S. Dehydration Reactions in Water. Bronsted Acid-Surfactant-Combined Catalyst for Ester, Ether, Thioether, and Dithioacetal Formation in Water. J. Am. Chem. Soc, 2002(124): 11971-11978.
    
    [67]苏建荣.氧键、芳环堆积构筑的多维超分子结构的合成与结构研究:[硕士论 文].杭州:浙江大学,2005.
    
    [68] Moulton B, Zaworotko M J. From Molecules to Crystal Engineering:Supramolecular Isomerism and Polymorphism in Network Solids. Chem. Rev.,2001(101): 1629-1658.
    
    [69] Aakeroy C B, Beatty A M, Leinen D S. A versatile route to porous solids:organic-inorganic hybrid materials assembled through hydrogen bonds. Angew.Chem., Int. Ed. 1999(38): 1815-1819.
    
    [70] Tadokoro M, K Nakasuji, Hydrogen bonded 2, 2'-biimidazolate transition metalcomplexes as a tool of crystal engineering. Coord. Chem. Rev., 2000(198):205-218.
    
    [71] Stefan K. Holger M, Nicolas G,Anja B, Alexandra K, Uwe S, Wulfhard M,Carsten D, Holdt H J. Supramolecular Assemblies with Honeycomb Structuresby π-π Stacking of Octahedral Metal Complexes of 1,12-Diazaperylene. Eur. J.Inorg. Chem., 2006:1547-1551.
    
    [72] Lehn J M, Supramolecular chemistry-scope and perspectives molecules. supermolecules. and molecular devices (Noble lecture). Angew. Chem., Int. Ed. 1988(27): 89-112.
    [73] Cockroft S L. Hunter C A. Lawson K R. Perkins J. Urch C i. Electrostatic Control of Aromatic Stacking Interactions. J. Am. Chem. Soc., 2005(127), 8594-8595.
    [74] Allen F H. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Cryst. B., 2002(58): 380-388.
    [75] Yin M C, Ai C C, Yuan L J, Wang C W, Sun J T. Synthesis, structure and luminescent property of a binuclear terbium complex [Tb_2(Hsal)_8(H_2O)_2][(Hphen)2]·2H_2O. J. Mol. Struct., 2004(691): 33-37.
    [76] Costes J P, Juan J M C, Dahan F, Nicodeme F. Ferromagnetic interaction in a polynuclear gadolinium complex: structure and magnetic studies. Dalton Trans., 2003: 1272-1275.
    [77] Yin M C, Sun J T. Synthesis and characterization of two one-dimensional lanthanide coordination polymers. J. Alloys Compounds, 2004(381): 50-57.
    [78] Koziol A E, Brayska W, Klimek B, Kulaa, Palenik, Stepniak K. A new type of lanthanide (III) complex with 3-hydroxybenzoic acid, [ML_3(H_2O)_3]·2H_2O. Triaquatris(3-hydroxybenzoato)-neodymium (III) dehydrate. J.Coord.Chem., 1990(21): 183-191.
    [79] Liu J W, Zhu B, Ng S W. Bis(3-hydroxybenzoato-,O)bis(1 H-imidazole-(?) N~3)copper(II). Acta. Crystallogr., Sect.E., 2006(62): m3514-m3515.
    [80] Neogi S, Bharadwaj P K. An Infinite Water Chain Passes through an Array of Zn(II) Metallocycles Built with a Podand Bearing Terminal Carboxylates. Inorg. Chem., 2005(44): 816-818.
    [81] Bassi I W, Calcaterra M, Intrito R. X-ray crystal structure of the TiCl_4- p-ethylanisate adduct (TiCl-4 - O_3C_(10)H_(12))_2. J. Organomet. Chem. 1977(127): 305-313.
    [82] Cheng X N, Zhang W X, Zheng Y Z, Chen X M. The slow magnetic relaxation observed in a mixed carboxylate/hydroxide-bridged compound [Co_2Na(4-cpa)_2(μ_3-OH)(H_2O)]_∞ featuring magnetic A-chains. Chem. Commun., 2006: 3603-3605.
    
    [83] Gao S, Huo L H, Zhao H, Gu C S, Zhao J G. Synthesis, Structure and Thermal Stability of 3D Coordination Polymer [Sr_2(4-CPOA)_2(H_2O)_5] with 4-carboxyphenoxyacetate Ligand. Chin. J. Inorg. Chem., 2005(21): 1245-1248.
    
    [84] Kato M, Yamada Y, Inagaki Y, Mori W, Sakai K, Tsubomura T, Sato M, Yano S. Structures and Magnetic Properties of Iron(III) Dinuclear Complexes with Alkoxo and Carboxylato Bridges. Inorg. Chem., 1995(34): 2645-2651.
    
    [85] Alcock N W. Brown D A, Illson T F, Roe S M, Wallbridge M G H. Preparation and properties of some chlorotitanium carboxylates. X-Ray crystal and molecular structures of [{TiCl_3(O_2CCMe-3)}_3] and [Ti_2Cl_7(O_2CR)(RCO_2H)](R=p-ClC_6H_4 or CH=CHMe). Dalton Trans., 1991: 873-881.
    
    [86] Guo X X, Yan J B, Song W D. Bis(μ-4-chlorobenzoato)bis[(4-chlorobenzoato) bis(1H-imidazole-κN~3)cadmium(II)] dehydrate. Acta. Crystallogr., Sect.E., 2007(63): m1305-m1306.
    
    [87] Ma D E, Deng G H. catena-Poly[[[aquabis(4-chlorobenzoato-κ~2O,O')manganese (II)]-μ-4,4'-bipyridine-(?)~2 N:N']4,4'-bipyridine solvate]. Acta. Crystallogr., Sect.E., 2007(63): m1772.
    
    [88] Ruiz D, Sun Z M, Albela B, Folting K, Ribas J, Christou G, Hendrickson D N. Single-molecule magnets: different rates of resonant magnetization tunneling in Mnl2 complexes. Angew. Chem., Int. Ed., 1998(37): 300-302.
    
    [89] Brown D A, Wallbridge M G H, Li W S, McPartlin M. Chlorocarboxylates of tantalum and niobium. X-ray crystal and molecular structures of [TaCl_4(O-2Cr)]_2 (R=p-ClC_6H_4) and [NbCl_4(O_2CR)]_2(R=C_6F_5). Polyhedron ,1994(13): 2265-2270.
    
    [90] Coxall R A, Parkin A, Parsons S, Smith A, Timco G A, Winpenny R E P. High-Temperature Reactions of Metal Triangles: The Influence of Counterion, Ligand, and Metal on the Structure Observed. J. Solid State Chem., 2001(159):321-327.
    
    [91] Aalten H L, Koten G, Riethorst E, Stam C H. The Hurtley reaction. 2. Novel complexes of disubstituted acetylenes with copper(I) benzoates having a reactive ortho carbon-chlorine or carbon-bromine bond. X-ray structural characterization of tetrakis(2-chlorobenzoato)bis(diethyl acetylenedicarboxylate)tetracopper(I). Inorg. Chem., 1989(28): 4140-4146.
    
    [92] Xu H L, Yin H D, Gao Z J, Li G. Catalytic oxidation of diorganotin(IV) carboxylates to mixed-ligand monoalkyltin(IV) carboxylates by Ag+ and structure characterization of the mixed-ligand monoalkyltin(IV) 2-pyridinecarboxylate (2-C/PhCH-2)Sn(2-C/PhCO_2)(O_2CC_5H_4N-2)_2. J. Organomet. Chem., 2006(691): 3331-3335.
    
    [93] Clegg W, Harbron D R, Hunt P A, Little 1 R, Straughan B P. Structures of polymeric zinc 3,3-dimethylacrylate and zinc 2-chlorobenzoate. Acta Crystallogr.,Sect.C., 1990(46): 750-753.
    
    [94] Nakacho Y, Misawa T, Fujiwara T, Wakahara A, Tomita K. The Crystal and Molecular Structure of Zinc Complex of 2-Chlorobenzoic Acid. II. The Crystal and Molecular Structure of μ_3-Hydroxo-tri-μ-(2-chlorobenzoato)dizinc(II) Dihydrate. Bull.Chem.Soc.Jpn., 1976(49) :595-599.
    
    [95] Zhang B S. Crystal structure of bis[μ-chloro(2,2'-bipyridine-N,N')(μ-2- chlorobenzoato)lead(II)],[Pb(Cl)(C_(10)H_8N_2XClC_6H_4COO)]_2. Z.Kristallogr.-New Cryst.Struct., 2005(220) :73-74.
    
    
    [1] Higashi,, T. (1995). ABSCOR-Program for Absorption Correction. Rigaku Corporation, Tokyo, Japan.
    
    [2] Rigaku Corporation (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo,Japan.
    
    [3] Rigaku/MSC and Rigaku Corporation. (2002). CrystalStructure. Version 3.00.Rigaku/MSC. The Woodlands, TX, USA 77381-5209. Rigaku, Akishima, Tokyo.Japan.
    
    [4] Altomare A. Cascarano G, Giacovazzo C, Guagliardi A. Completion and refinement of crystal structures with SIR92. J. Appl. Cryst., 1993(26): 343-350.
    
    [5] Sheldrick, G. M. SHELXL-97. 1997, University of Gottingen, Germany.
    
    [6] (a) Spek A L. PLATON, An Integrated Tool for the Analysis of the Results of aSingle Crystal Structure Determination. Acta Crystallogr., Sect. A., 1990(46): C34.
    
    (b) Spek A. L., PLATON, A Multipurpose Crystallographic Tool, UtrechtUniversity, Utrecht, The Netherlands, 1998.
    
    [7] Farrugia L. J.. WinGX suite for small-molecule single-crystal crystallography. J.Appl. Cryst, 1999(32): 837-838.
    
    [8] Farrugia L. J., XRDIFF: simulation of X-ray diffraction patterns. J. Appl.Crystallogr., 1997(30): 565-566.
    
    [9] Siemens XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison,Wisconsin, USA, 1994.
    
    [10] Watkin D. M., Pearce L., Prout C. K., CAMERON - A Molecular GraphicsPackage, Chemical Crystallography Laboratory, University of Oxford, 1993.
    
    [11] International Tables for X-ray Crystallography, Vol. IV, Kynoch Press, Birmingham, England. Present distributor, Kluwer Academic Publishers, Dordrecht, 1974. 72-98.
    
    [12]苏建荣.氢键、芳环堆积构筑的多维超分子结构的合成与结构研究:[硕士论 文].杭州:浙江大学,2005.
    
    [1] Higashi,, T. (1995). ABSCOR-Program for Absorption Correction. RigakuCorporation, Tokyo, Japan.
    
    [2] Rigaku Corporation (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo,Japan.
    
    [3] Rigaku/MSC and Rigaku Corporation. (2002). Crystal Structure. Version 3.00.Rigaku/MSC, The Woodlands, TX, USA 77381-5209. Rigaku, Akishima, Tokyo,Japan.
    
    [4] Altomare A, Cascarano G, Giacovazzo C, Guagliardi A. Completion and refinement of crystal structures with SIR92. J. Appl. Cryst, 1993(26): 343-350.
    
    [5] Sheldrick, G. M. SHELXL-97. 1997, University of Gottingen, Germany.
    
    [6] (a) Spek A L. PLATON, An Integrated Tool for the Analysis of the Results of aSingle Crystal Structure Determination. Acta Crystallogr., Sect. A., 1990(46): C34.
    
    (b) Spek A. L., PLATON, A Multipurpose Crystallographic Tool, Utrecht??University, Utrecht, The Netherlands, 1998.
    
    [7] Farrugia L. J., WinGX suite for small-molecule single-crystal crystallography. J.Appl. Cryst, 1999(32): 837-838.
    
    [8] Farrugia L. J., XRDIFF: simulation of X-ray diffraction patterns. J. Appl.Crystallogr., 1997(30): 565-566.
    
    [9] Siemens XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison,Wisconsin, USA, 1994.
    
    [10] Watkin D. M., Pearce L., Prout C. K., CAMERON - A Molecular GraphicsPackage, Chemical Crystallography Laboratory, University of Oxford, 1993.
    
    [11] International Tables for X-ray Crystallography, Vol. IV, Kynoch Press, Birmingham, England. Present distributor, Kluwer Academic Publishers, Dordrecht, 1974. 72-98.
    
    [12] Allen F H. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Cryst. B., 2002(58): 380-388.
    
    [13] Xu D J, Zhang B Y, Su J R, Nie J J. Intramolecular n-n stacking in diaquabis(2-hydroxybenzoato-κO)bis-(1,10-phenanthroline-κ2N,N')strontium (Ⅱ). Acta Cryst. C, 2007(63): m622-m624.
    
    [1] Higashi.. T. (1995). ABSCOR-Program for Absorption Correction. RigakuCorporation, Tokyo, Japan.
    
    [2] Rigaku Corporation (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo,Japan.
    
    [3] Rigaku/MSC and Rigaku Corporation. (2002). CrystalStructure. Version 3.00.Rigaku/MSC, The Woodlands, TX, USA 77381-5209. Rigaku, Akishima, Tokyo,Japan.
    
    [4] Altomare A, Cascarano G, Giacovazzo C, Guagliardi A. Completion and refinement of crystal structures with SIR92. J. Appl. Cryst, 1993(26): 343-350.
    
    [5] Sheldrick, G M. SHELXL-97. 1997, University of Gottingen, Germany.
    
    [6] (a) Spek A L. PLATON, An Integrated Tool for the Analysis of the Results of aSingle Crystal Structure Determination. Acta Crystallogr., Sect. A., 1990(46): C34.
    
    (b) Spek A. L., PLATON, A Multipurpose Crystallographic Tool, UtrechtUniversity, Utrecht, The Netherlands, 1998.
    
    [7] Farrugia L. J., WinGX suite for small-molecule single-crystal crystallography. J.Appl. Cryst, 1999(32): 837-838.
    
    [8] Farrugia L. J., XRDIFF: simulation of X-ray diffraction patterns. J. Appl.Crystallogr., 1997(30): 565-566.
    [9] Siemens XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA, 1994.
    [10] Watkin D. M., Pearce L., Prout C. K., CAMERON - A Molecular Graphics Package, Chemical Crystallography Laboratory, University of Oxford, 1993.
    [11] International Tables for X-ray Crystallography, Vol. IV, Kynoch Press, Birmingham, England. Present distributor, Kluwer Academic Publishers, Dordrecht, 1974. 72-98.
    
    [12] Allen F H. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Cryst. B., 2002(58): 380-388.
    
    [13] Hunter C A, Sanders J K M. The Nature of π—π Interactions. J. Am. Chem. Soc. 1990(112): 5525-5534.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700