用户名: 密码: 验证码:
TiO_2纳米粒子的制备及其摩擦学与磨损自修复性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摩擦阻力广泛存在于实际生产和我们的生活中,所有机器的运动都是依赖于其零件副的相对运动,有相对运动就有磨损,磨损是导致表面损坏、零件失效和材料损耗的主要原因。磨损不仅消耗能源和花费材料、降低设备运转效率,而且加速设备报废、导致部件更换频繁,造成极大的经济损失。因此,由磨损而带来的诸多问题越来越引起学术界的广泛重视。减少磨损的重要措施之一是润滑,然而传统润滑油只能起减少相对运动表面的摩擦,降低其磨损的目的。随着现代科学技术的进步,机器设备正日益向高速、重载和高精度的方向发展,因此,如何改善材料的摩擦磨损性能和机器零件的润滑状态,以延长机器的使用寿命,已经受到摩擦学工作者的广泛关注。在基础润滑油中加入各种添加剂是改善其润滑性能的重要方法,而对材料表面进行改性处理则是改善其摩擦磨损性能的有效方法之一。
     纳米材料由于独特的物理化学性质,在摩擦学领域显示了广阔的应用前景,成为具有巨大潜力的润滑油添加剂。尽管目前的研究还处在初期阶段,许多问题有待解决,但大量实验结果表明,纳米材料可以作为润滑油添加剂而起到抗磨、减摩和抗极压作用。
     本文首先在合成了硬脂酸与聚乙二醇400表面复合修饰的锐钛矿及金红石型TiO_2纳米粒子,采用投射电镜(TEM)、X-射线粉末衍射(XRD)、FTIR等现代分析手段对所合成的表面修饰纳米微粒的形貌和结构进行了表征。采用四球试验机和HQ-I摩擦磨损试验机对表面修饰纳米微粒作为润滑油添加剂的摩擦学性能及其对摩擦副的磨损自修复性能进行了评价。实验结果表明:
     1表面复合修饰锐钛矿及金红石型纳米TiO_2作为润滑油添加剂均具有良好的摩擦学性能,其中,金红石型纳米TiO_2的摩擦学性能更佳。
     2表面复合修饰锐钛矿及金红石型纳米TiO_2作为润滑油添加剂对摩擦副的磨损均有一定的自修复效果,它们的磨损自修复机理不同。
Wearing resistance extensively exists in the actual production and our life. All machinery motion is relative movement relying on its` sliding couple. Abrasion happened with relative movement, and abrasion is the main cause of surface damage, spares invalid, and material loss. Wear not only consumes the enery and materials and decreases the equipment efficiency, but also accelerates the equipments discard and causes the parts replacement frequently and big economy loss. Therefore, abrasion is causing more and more extensive academic attention of many field. One of the important step of decreasing abrasion is lubracation, and the old lubrication oils only reduce the friction and wear function of the machines and equipment are developed in the direction of high speed, high load and high precision. The problem of how to improve the tribological properties of materials and the lubrication state of machine parts for prolonging their lifetime are becoming more and more attractive to improve attractive to all tribologists. The addition of various additives into lubricating oils is an important way to improve their lubrication properties, whereas, the application of surface treatments on materials is the effective methed for improving the friction and wear properties of machine parts.
     Nano-materials show broad application due to its unique physical and chemcial characteristics in the field of tribology, and become potential lubricating oil additives. Despite the present research still in the initial stage, many problems require to be solved, however, lots of experimental results indicate that nano-materials possess the characteristics of reducing wear, antiwear and extreme pressure.
     In this thesis, stearic acid and PEG 400 modified nanoparticles of anatase and rutile were prepared. Transimission electron microscope (TME)、X-ray powder diffraction spectroscopy (XRD) and Thermogravimetric Analysis (TGA) were used to characterize the morphologics and structures of these surface-modified nanoparticles.
     All these prepared nanoparticles were used as additives in lubricating oil liquid paraffin and their tribological properties and self-repairing for the sliding couple were evaluated on a four-ball machine and HQ-1 machine.The following main conclusions were reached:
     1 The stearic acid and PEG 400 modified nanoparticles of anatase and rutile as additives in lubricating oil show good tribological properties. And rutile nanoparticles is better than anatase nanoparticles.
     2 Both of the stearic acid and PEG 400 modified nanoparticles of anatase and rutile as additives in lubricating oil can aslo repair the sliding couple. But their self-repairing mechanisms are different.
引文
[1] 刘维民,薛群基。摩擦学研究及发展趋势。中国机械工程[J],2000,11(1).
    [2] 温诗铸著,摩擦学原理,北京:清华大学出版社,1990.
    [3] 欧忠文,徐滨士,丁培道等,材料导报,2000,14 (11):28.
    [4] 陈爽,李楠,刘维民.DDP 修饰 PbO 纳米微粒的摩擦学性能研究.吉林化工学院学报,2002,9(3):4-6.
    [5] 曹茂盛等,纳米材料导论[M],哈尔滨:哈尔滨工业大学出版社,2001:5~14.
    [6] 许并社等,纳米材料及应用技术[M],北京:化学工业出版社,2004,1:14~16.
    [7] 周瑞发,韩雅芳,陈祥宝著,纳米材料技术,北京:国防工业出版社,2003.
    [8] 周震,阎杰等,纳米材料的特性及其在电催化中的应用,化学通报,1998,(4):23~26.
    [9] 刘吉平,廖莉玲,无机纳米材料,北京:科学出版社,2003,7:28~30.
    [10] 张志馄,崔作林,纳米技术与纳米材料,北京:国防工业出版社,2000.
    [11] 杨剑,滕风恩,纳米材料综述,材料导报,1997,11(2):6~10.
    [12] 张立德,牟季美著,纳米材料与纳米结构,北京:科学出版社,2001.
    [13] 温诗铸著,摩擦学原理,北京:清华大学出版社,1990.
    [14]L.Rapoport,V.Leshchinsky,I.Lapsker,Yu.Volovik,O.Nepomnyashchy,M.Lvovsky ,R.Popovitz-Biro,Y Feldman,R.Tenne. Tribological properties of WS2 nanoparticles under mixed lubrication.Wear.2003,255:785-793.
    [15] Hisakado T,Tsukizoe T,Yoshikawa H.Lubrication mechanism of solid lubricants in oils. ASME Lubr Tech[J],1983,105:245~253.
    [16] Reick F G.Energy sabing lubricants coating colloidal PTFE.ASLS Lubr Eng[J],1982,38(5):635~646.
    [17] Yousif A E,Nacy S M.The lubrication of journal bearings with two phase lubricants.Wear[J],1981,66(6):230~240.
    [18] Cusano C,Sliney H E.Dynamics of solid dispersions in oil during the lubrication of point contacts part Ⅰ:Graphite.ASLE Trans[J].1982,25(1):183~189.
    [19] Cusano C, Sliney H E.Dynamics of solid dispersions in oil during the lubrication of point contacts part Ⅱ:Molybdenum Disulfide.ASLE Trans[J],1982,25(2):190~197.
    [20] Bantz W J.Solid Lubricant additives effect of concentration and other additive on anti-wear performance.Wear[J].1971,17(3):42-432.
    [21] 胡献国,胡坤宏,沃恒洲。纳米二硫化钼作为机械油添加剂的摩擦学特性研究。 摩擦学学报,2004,24(1).
    [22] S.Tatasov,et al.Study of friction by nanocopper additives to motor oil.Wear,2002,13(6):37~40.
    [23] 周静芳,张治军,王晓波等。油溶性铜纳米微粒作为液体石蜡添加剂的摩擦学性 能研究。摩擦学学报,2000,20(2):123~126.
    [24] 段春英,周静芳,吴志申等。聚苯乙烯/Ag 核壳结构纳米微粒的制备及表征。物理 化学学报,2003,19(11).
    [25] 郭志光,顾卡丽,徐建生等。纳米润滑油添加剂的润滑自修复效应。材料保护[J],2003,36(9):1049~1053.
    [26] Tarasov S,Kolubaev A,Belyaev S,et al.Study of friction reduction by nanocopper additives to motor oil. Wear[J],2002,252:63~69.
    [27] VarlotK,KasraiM,Bancrof G M,Yamaguchi ES,et al.X-ray absorption study of antiwear films generated from ZDDP and boratemicelles.Wear[J]2001,249(12): 1029 ~1035.
    [28] Hu Z S,Lai R,Lou F,Wang L G,er al.Preparation and tribological properties of nanometer magnesium borate as lubricating oil additive,Wear[J],2002,252(5): 370~374.
    [29] 程西云,邓小桅,曹兴进等。纳米硼酸镧添加剂的摩擦学性能研究。机械科学与技术[J],2001,20(3).
    [30] 程西云,蒋松。硼系润滑油添加剂在线表层改性行为试验研究。农业机械学报,2002,33(4).
    [31] Hu Z S,Dong J X,Chen G X,et al.Preparation and tribological properties of nanoparticle lanthanum borate.Wear[J],2000,243(1):43~47.
    [32] 陈爽,李楠,孟慧娟。DDP 修饰纳米粒子的摩擦学性能比较。五邑大学学报(自然科学版),2003,01.
    [33] 郑启新,官文超,江贵长。苯乙烯/甲基丙烯酸-二氧化钛纳米微球的性能,华中科技大学学报(自然科学版),2003.
    [34] 张会臣,佘云川,刘世永等。ZnO 纳米微粒作为润滑油添加剂的摩擦学作用机理。机械科学与技术[J] ,2003,22(3).
    [35] 陈爽,刘维民,欧忠文等。油酸表面修饰 PbO 纳米微粒作为润滑油添加剂的摩擦学性能研究。摩擦学学报,2001,21(5).
    [36] Christian J.Schwartz,et al.Studies on the tribological behavior and transfer film-counterface bond strength for polyphenylene sulfide filled with nanoscale alunina particles.Wear[J],2000,237:261~273.
    [37] 胡善泽。解放军后勤工程学院博士后工作报告。重庆,1998.
    [38] 吴志申,陶小军,周静芳等。CeF3 纳米微粒的合成、结构及摩擦学行为研究。稀土[J] ,2001,22(5).
    [39] 梁起,张治军,薛群基。LaF3 纳米微粒的摩擦学行为研究。稀土[J],20(2).
    [40] Zhang Z F,Liu W M,Xue Q J.Study on lubricating of La(OH)3 nanocluster modified by compound nitrogen in liquid paraffin.wear[J],1998,218:139~144.
    [41] 叶文玉,程铁峰,郭新勇等。2,5-二疏基-1,3,4-噻二唑-聚乙二醇共聚物纳米微粒的制备及其摩擦学行为。摩擦学学报,2003,23(2).
    [42] 欧忠文,刘维民,徐滨士等。几种含铅有机物作为润滑油添加剂的摩擦学特性及作用原理研究。摩擦学学报,2002,22(2).
    [43] 赵彦保,周静芳,张治军等。聚合物纳米微球的合成及摩擦学行为。应用化学[J],1999,16(4):33~38.
    [44] 赵彦保,周静芳,张治军等。PS/TiO2 复合微球的制备及表征。物理化学学报,2000,11:1035.
    [45] 张传安,乔玉林,池浚成等。含纳米金刚石润滑油减摩抗磨添加剂的摩擦学性能。中国表面工程[J],2002,15(2):29~33.
    [46] 沈明武,温诗铸。金刚石纳米颗粒对薄膜润滑性能的影响。机械工程学报,2001,376(1):14~19.
    [47] Xu T,Zhao J Z,Xu K,et al.Study on the tribological properties of ultradispersed diamond containing soot as an oil additive.Trib.Trans, 1997,40 (1):178~182.
    [48] 雷洪,官文超。水溶性 C60-乙烯基吡咯烷酮 nm 微球摩擦学行为。华中理工大学学报,2000,28(7):98~101.
    [49] Bhushan B,et al.Appl.Phys.Lett,1993,62(25):3253~3255.
    [50]莫易敏 磨损自补偿理论研究及其在重载丝杆螺母上的应用,博士学位论文,机械科学研究院,1995.
    [51] 莫易敏,邹岚,赵源等.磨损自补偿理论设想,中国机械工程,1998 vol9 No2.
    [52] 莫易敏,邹岚,赵源等.摩擦行程对磨损自补偿性的效应,材料保护,1997 年 2月,第 30 卷第 2 期,14~16.
    [53] 莫易敏,邹岚,赵源.磨损自补偿的载荷效应研究,机械科学与技术,1990 年 11月 vo117No6,1014~1016.
    [54] 莫易敏,邹岚,赵源等.基础油粘度对磨损自补偿性能影响研究,润滑与密封,1998年第 1 期 34~36.
    [55] 莫易敏,邹岚,赵源等.自补偿润滑油高压流变学研究,润滑与密封,1997 年第 4期 29~31.
    [56] 莫易敏,邹岚,赵源等.自补偿摩擦表面微观形貌分析,机械科学与技术,1998年第 5 月,vo117 No3.
    [57] 莫易敏,邹岚,赵源等.磨损自补偿的摩擦学原理,润滑与密封,1998 年第 5 期,32~34.
    [58] 莫易敏,邹岚,赵源等.自补偿的磨损模型研究,润滑与密封,1998 年第 3 期,8~10.
    [59] 张建华.有机金属润滑复合添加剂及其摩擦学特性研究,硕士学位论文,武汉材料保护研究所,1996.
    [60] Zhang Jianhua etLTemperature characteristics of Boundary Lubricating Film of Orgeno-compound,Proceeding of ASLATRIB'98,126~127.
    [61] 张建华,赵源等.磨损自补偿润滑添加剂 ZT2 的摩擦学特性试验,机械科学与技术,1998 年 11 月,Vo117 No6.
    [62] 张建华,赵源等.试验行程及滑动速度对磨损自补偿添加剂 ZT2 的耐磨特性影响,机械科学与技术,1997 年 11 月第 16 卷.
    [63] 姜秉新,陈波水,董浚修.铜型添加剂摩擦修复作用的可行性研究,润滑与密封,1999 年第 2 期:50~52.
    [64] 张立德,牟季美著,纳米材料与纳米结构,北京:科学出版社,2001.
    [65] 张立德编著,纳米材料,北京:化学工业出版社,2000.
    [66] 张志棍,崔作林著,纳米技术与纳米材料,北京:国防工业出版社,2000.
    [67] 黄德欢著,纳米技术与应用,上海:中国纺织大学出版社,2001.
    [68] 欧忠文,陈国需,徐滨士等。油润滑纳米添加剂摩擦学设计及研究中几个值得商榷的问题,润滑与密封,2006,2:141~143.
    [69] 张立德等,纳米材料和结构,科学出版社,2001.
    [70] Hisakado T.Tsukizoe T,Yoshikawa H,J.Lubric Tech,1983,105:451.
    [71] Xu Tao,Zhao Jiazheng,J.Phys D:Appl.Phys,1996,29:2923.
    [72] 夏延秋,丁津原等,沈阳工业大学学报,1999,(4).
    [73] Z S Hu,J X Dong,Wear,1998,216:92~96.
    [74] 孙磊,周静芳等,摩擦学学报,2001,(5):196~200.
    [75] 张治军,表面修饰纳米粒子的化学制备及摩擦学行为的研究,博士论文,1996,7.
    [76] 今井淳一郎.日本公开特许公报[P].平 2-194063.
    [77] 许向阳,王柏春,朱永伟等。表面活性剂组合使用对纳米金刚石在水介质中分散行为的影响,矿冶工程,2003,23(3):60~64.
    [78] Kathryn G. Severin,Jeffrey S Ledford,Beatrice Atorgerson,Kris A Berglund.;Chracterization of Titanium and Zirconium Valerate Sol-Gel Films.;Chem.Mater.;1994;6(7):890.
    [79] Nakamoto K,Infrared and Spectra of Inorganic and Organic Compounds,Wiley-Inteerscience.;New Yek 1978, p.230.
    [80] HOFFMANNM R, MARTIN S T, CHOI W Y,et al. Environmental application of semiconductor photo-catalysis [J]. J Chem Rev, 1995,95(1): 69–96.
    [81] NAKADE S, MATSUDA M, KAMBE S, et al. Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells [J]. J Phys Chem B, 2002,106(39): 10004–10010.
    [82] SHARMA R K, BHATNAGAR M C, SHARMA G L. Mechanism in Nb doped titania oxygen gas sensor [J]. Sens Actuators B, 1998, 46:194–201.
    [83] XU Qunhua, YANG Xujie, LU Ludeetal, et al. Chin Plast Ind (in Chinese),2000, 28(6): 43–44.
    [84] WEI Jianhong, ZHAO Xiujian, YU Jiaguo, et al. J Chin Cram Soc (in Chinese), 2001, 29(1): 93–96.
    [85] 李学富,超微细二氧化钛─ 一种高功能的新型无机材料[J]。化工新型材料,1995,(5):36238.
    [86] 唐阳清,周馨我.纳米 TiO2 的制备方法[J].材料导报,1995, 9(3):20225.
    [87] 林元华,张中太,黄淑兰等.纳米金红石型TiO2粉体的制备及其表征[J].无机材料, 1999, 14 (6):853-856.
    [88] Nakagawa Y,Grigorin C,Masugata K.Synthesisof TiO2 nanosize powder by intense light ion-beam evaporation[J].Journal of Materials Science,1998,33(2):529 -535.
    [89] 孙爱华,杨 晔,林永兴等。低温制备金红石型纳米 TiO2 粉体,硅酸盐学报,2007,2:170~173.
    [90] 董睿,姜继森,金红石相纳米二氧化钛的制备,华东师范大学学报,2007,1:135~140.
    [91] PARK S D,CHO Y H,KIM W W,et al. Understanding of homogeneous spontaneous precipitation for mododiapersed TiO2 ultrafine powders with rutile phase around temoerature[J].J Solid State Chem,1999,146:230~238.
    [92] Hahn H,Logas J L,Averback R S.Sintering characteristics of nano-crystalline materials. Journal of Material Research,1990,(5):609~614.
    [93] Melendres C A,Narayansamy A.Study of nanophase titania grain boundaries by Raman spectroscopy. Journal of Material Research,1989,(4):1246~1250.
    [94] Dong J X,Chen G X,Luo X M,etal.A new concept—formation of permeating layer from nonactiveAntiwear additives.Lubrication Engineering,1994,(22):124~128.
    [95] Zhao Xiaopeng,Zhou Benlian,Luo Chunrong.etal. A model of Intelligent Material with Self-repair Function[J].Chinese Journal of Materials Research, 1996 10(2):101-104.
    [96]Satoshi Murata,Eiichi Yoshida,Haruhisa Kurokawa,etal.Self-repairing mechanical system [C]. Part of the SPIE conference on sensor fusion and decentralized control in robotic systems Ⅱ,Boston, September 1999,202-213.
    [97] M Zako,N Takano,H Fujioka.Intelligent materials system using epoxy particles for self-repair [C].Proceedings of the eighth Japan-US.Conference on composite materials,inner harbor Baltimore,Maryland,September 1998,841-849.
    [98] Hideki Masuda,Masato Yotsuya,Mari Asano,etal.Self-repair of ordered pattern of nanometer dimensions based on self-compensation properties of anodic porous alumina [J].Applied Physics Letters,2001,78(6):826-828.
    [99] M Motuku,U K Vaidya,G M Janowski.parametric studies on self-repairing approaches for resin infused composites subjected to low velocity impact [J].Smart Mater Struct 1999,8:623-628.
    [100] 曹学军。美国国家纳米技术计划[J].国外科技动态,2000(6):18-19.
    [101] 徐滨士。纳米表面工程[M],北京:化学工业出版社,2004.
    [102] 徐滨士,梁秀兵,马世宁等.实用纳米表面技术[J].中国表面工程,2001,14(3):13-17.
    [103] Wang xiaoyong,Chen Yuezhu.Application of nanomaterials in lubrication technique [J].Chemical Industry and Engineering Progress,2001(2):27-30.
    [104] 邵鑫,薛群基.纳米 TiO2 对聚醚砜酮复合材料摩擦学性能的影响.高分了材料科学与工程,2003, 22(1):25- 31.
    [105] Sun Rong,Li Mingjing,Gao Yongjian.Study on the cutting properties of water-based emulsified liquid containing OA/TiO2 nanoparticles and tea sapoins.Tribology,2002,22(4):254-257.
    [106] Merschdorf M.Photoemission from multiply excited surface plasmons in Ag nanoparticles.Appl Phys A,2002,20(4):547-552.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700