用户名: 密码: 验证码:
高盐难降解工业废水微生物处理的污泥驯化研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以含盐量为22.5%,B/C为0.27的苯乙酸酸化废水为材料,对高
    盐度难降解工业废水微生物处理的污泥驯化进行了研究。
     结果表明以盐份作为选择压力,驯化出能在NaCl浓度为
    45000mg/L环境中正常运行的耐高盐污泥,在反应器进水COD为
    3429mg/L,出水COD达到115mg/L,容积负荷达到1.55kgCOD/m~3d。
     经高盐驯化的污泥对盐浓度变化不敏感,在不同的盐浓度环境中
    均有出较强的活性。
     耐高盐污泥驯化时间较长,前后达50天,整个驯化期可以分为两
    个阶段:延滞阶段和污泥增长阶段。在延滞阶段,污泥中微生物数量
    从4.3×10~9个/gVSS增加到3.5×10~(11)个/gVSS。延滞阶段的初期是能
    降解苯乙酸的微生物在污泥中得到增长,占据优势地位;盐浓度上升
    以后,既能降解苯乙酸又能耐盐的微生物在污泥中逐渐占据优势地位。
    驯化成熟的污泥中的优势菌为耐盐细菌Al(Arthrobacter sp.)和
    P3(Psendomonas sp.),其中Al在数量上占绝对优势。在污泥增长阶段,
    污泥中微生物数量和种群维持动态平衡,而污泥量从3.1g/l上升到
    6.0g/l。
     研究了耐高盐污泥的优势菌Al(Arthrobacter sp.)在高盐条件下
    的渗透调节机制,发现Al在在高盐条件下,其体内积累K~+、游离氨
    基酸和QAC作为调渗物质。K~+能激活游离氨基酸和QAC的合成。
     保持1号反应器中较高的K~+水平(50mg/l)可以减轻NaCl对污泥的
    抑制,即K~+对NaCl具有拮抗效应。初步确定拮抗效应的作用机理与
    K~+是污泥中优势微生物Al的调渗物质并对其他两类重要的调渗物质
    游离氨基酸和QAC的合成有激活作用有关。
     采用接触氧化工艺对NaCl浓度约为40000mg/L,B/C约为
    0.27的高盐难降解工业废水在工程规模上进行了生化处理。在平
    均进水COD浓度为2940mg/L时,系统的容积负荷达到1.2kgCOD/m~3·d,平
    均出水COD达到96.3mg/L,平均COD去除率达到96.7%。
This research was aimed at microbiological treatment of phenyl acetic
     acid manufacturing waste water. This waster water was characterized by
     hypersalinity, high concentration of refractory organic pollutants. Low
     BOD/COD.
     The result showed that salt-tolerant sludge could be achieved by
     taking salt as selection pressure. When the influent COD was 3429mg1L
     with the concentration of sodium chloride 45000mg/L, the volumetric
     loading could reached to 1 .55kgCOD/m3 d with the effluent COD 11 5mg/L.
     The acclimation course of salt-tolerant sludge was divided into two
     phases: the lag phase and the sludge growth phase. In the lag phage the
     bacteria population increased from lO9ceIl/gVSS to lO11cell/gVSS. The
     predominant species in the matured salt-tolerant sludge is salt-tolerant bacteria
     strain Al (Arthrobacter sp.) and strain P3(Pseudomonas sp.). in the sludge
     growth phage, the sludge concentration increased from 3.1 g/L to 6.Og/L.
     Salt-tolerant sludge operated under high salinity was not sensitive to
     salinity change while the sludge operated under low salinity was sensitive
     to salinity change.
     The osmoregulation mechanism of strain Al (Art hroba cter sp.) was
     studied,it was found that Al accumulated K~, free amino acid and QAC as
     its osmoprotecant.The intracellular level of K~, free amino acid and QAC
     increased by 3 times;2 times;6.7 times respectively when the level of
     sodium chrolide in MM increased from 0.1 M to 1 .OM. It was also found that
     K~ could stimulate the synthesis of free amino acid and QAC.
     The positive effect of K~ to the salt-tolerant sludge operated under
     high salinity was due to its role as osmoprotectant and stimulator to the
     synthesis of other osmoprotectant.
     Contact Oxidation Method was employed to treat hypersaline
     refractory industrial wastewater in field scale. The result show that the
     volumetric loading could reach to 1.2kg COD/rn3 d while the effluent COD is
     96.3mg/L with the COD removal efficiencies 96.7%.
引文
1、吴舜泽,夏青,刘鸿亮.中国流域水污染分析.环境科学与技术,2000,89 (2):1~6
    2、刘鸿亮等.中国水环境预测与对策概论.北京:中国环境科学出版社 1994
    3、谭征等.走向海洋新世纪.北京:北京工业大学出版社 1993
    4、刘洪滨.我国海水淡化和海水直接利用事业前景的分析.海洋技术,1995,14 (4):76
    5、尤作亮,蒋展鹏,祝万鹏,海水直接利用及其环境问题分析.给水排水,1998,24 (3):64~67
    6、文湘华,占新民,王建龙,钱易,含盐废水的生物处理进展.环境科学,1999,20 (3):104~106
    7、耿安朝等.废水生物处理发展与实践.沈阳:东北大学出版社 1996
    8、C.P.小莱斯,利格雷迪,亨利 C.利姆编著,李献文等译.废水生物处理理论与应用 1983
    9、杨健等,水解酸化—好氧工艺处理感光材料有机废水研究.环境科学与技术,1999,84 (1):34—37
    10、杨风林,全燮,薛大明,赵雅芝,冯文国,苍郁.水中氯代有机化合物处理方法及研究进展.环境科学进展,1996,4 (6):36~44
    11、沈东生,徐向阳,冯孝善.含氯代芳香族化合物废水的生物处理技术.中国给水排水,1996,12 (5):26~28
    12、李哲,刘振华,张俊贞,SBR法处理油田采出水.城市环境与城市生态,2000,13(1):41~42
    13、闵航主编.厌氧微生物学.杭州:浙江大学出版社,1993
    14、赵韵琪,祁梦兰.微电解—SBR组合工艺处理漂染废水.上海环境科学,1998,17(9):22—24
    15、齐军,顾温国,李劲.水中难降解有机物氧化处理技术地研究现状和发展趋势.工程技术,2000,3:17~19
    16、李鸿旺.美国工业废水处理新技术.给水排水,1998,24 (8):32~33
    
    
    17、王世明.PTA污水厌氧处理的颗粒污泥驯化 南京农业大学硕士论文.1995
    18、李季伦主编.微生物生理学.北京:北京农业大学出版社,1993
    19、程树培编.环境生物技术.南京:南京大学出版社,1994
    20、魏复盛等.水和废水监测分析指南.北京:中国环境科学出版社,1997.446~453
    21、刘志培,杨惠芳,周培瑾.苯胺降解菌的分离和特性研究.环境科学学报,1998,19(2):174~179
    22、杨苏声,李季伦.耐盐高效大豆根瘤菌株的构建,微生物学报,1989,29 (2):107~112
    23、杨苏声,李季伦,快生型大豆根瘤菌的耐盐机制和结瘤性状.北京农业大学学报,1988,14 (2):143~147
    24、陈雪松,张海瑜,高为民,朱坤,阚风玲,杨苏声.苜蓿中华根瘤菌与耐盐有关的DNA片段的克隆.微生物学报,1999,39 (6):489~493
    25、孟文茂.大豆根瘤菌耐盐生理和耐盐性转化的研究.南京农业大学硕士论文.1988
    26、杨苏声.盐激条件下快生大豆根瘤菌的渗透调节.微生物学报,1995,35 (1):1~6
    27、何星海,张忠祥,马世豪.对苯二甲酸(TA)可生物降解性的研究.环境科学,1992,13 (3):18~24
    28、国家环保局等编.水和废水监测分析方法(第三版),北京:中国环境科学出版社,1997
    29、王菊思等.某些芳香化合物生物降解性研究.环境科学学报,5 (4):407~414
    30、庞金梅,池宝亮,段亚利.苯二甲酸酯的微生物降解与转化.环境科学,1993,15 (3):88~90
    31、李湛江,韦朝海,任源,梁世中.硝基苯降解菌生长特性及其降解性能.环境科学,20 (5):20~24
    32、陈勇生,陈丽侠,杨杰,庄源益,戴树桂.32种芳香化合物的好氧生物降解性表征.环境科学,16 (1):43~48
    
    
    33、张福锁主编.环境胁迫与植物营养,北京:北京农业大学出版社,1993,25~54
    34、闵航,陈美兹,赵宇华,钱泽澍,厌氧微生物学.浙江大学出版社,1993,40~49
    35、林栖凤,李冠一.植物耐盐研究进展.生物工程进展,2000,20 (2):20~25
    36、黄红英,刘爱民,张林普.真细菌的渗透调节机制.微生物学通报,1999,26 (3):218~220
    37、刘铁汉,周培瑾.嗜盐微生物.微生物学通报,1999,26 (3):232
    38、田新玉,周培瑾,王大珍.极端嗜盐菌和耐盐菌的区分.微生物学报,1990,30 (4):314~317
    39、杨苏声,曾静,李季伦.快生型大豆根瘤菌的渗透调节.微生物学报,1993,33 (2):86~91
    40、刘友良,於丙军.盐胁迫下植物体内的离子平衡,22~24
    41、刘厚田 杜晓明 刘金齐 邹晓燕 柳若安 藻菌系统降解偶氮染料的机理研究 环境科学学报 1993,13 (3):332~338
    42、张娥,盛玲玲.印染废水处理系统中的主要细菌群体和功能.环境科学,1987,19 (2):20~24
    43、郑元景等.污水厌氧生物处理[M] 北京:中国建筑工业出版社,1988
    44、宋松泉,傅家瑞.植物质膜H+-ATPase的研究进展.植物生理学通讯,1993,29 (2):130~136
    45、章文华,刘友良.钙对大麦幼苗盐胁迫的缓解效应.植物生理学通讯,1992,28 (3):176~179
    46、钱骅,刘友良,大麦根液泡膜Na+/H+逆向运输与盐分区域化分配的关系.南京农大学报,1995,18 (2):16~20
    47、李阜棣,喻子牛,何绍江主编.农业微生物实验技术.北京:中国农业出版社,1996
    48、中科院微生物研究所细菌分类组编.一般细菌常用鉴定方法.北京:科学出版社,1978
    
    
    49、王大梠编著 细菌分类基础。北京:科学出版社 1977
    50、J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯.分子克隆实验指南.北京:科学出版社,1996,880~885
    51、(日)微生物研究法讨论会编.微生物实验法.北京:科学出版社,1981
    52、张龙翔,张庭芳,李令媛,主编.生化实验方法和技术.北京:人民教育出版社 1990
    53、范秀容,李广武,沈萍 微生物学实验(第二版).北京:高等教育出版社,1993
    54、国家环保局《水和废水监测分析方法》编委会编.水和废水监测分析方法(第三版).北京:中国环境科学出版社,1997,216~220,286~290
    55、Sui-Sheng T. Hua, Victor Y. Tsai, Georgia M. Lichens and Amy T. Noma. Accumulation of Amino acids in Rhizobium sp. Strain WR1001 in response to sodium chloride salinity. 1982, App. Enviro. Microbiol, 44:135-140.
    56、D. W. Tempest and J. L. Meets. Influence of environment on the free amino acid pool content of bacteria. 1970, J. General Microbiol, 60:213-217.
    57、D. Le Rudulier et al Molecular Biology of Osmoregulation Scinece, 224: 1064~1068
    58、Johannes F. Imhoff and F. Rodriguez-valeera Betaine is the main compatible solute of halophilic eubacteria. 1984, J. Bacteriol, 160: 478-479.
    59、Bjarne Landfald and Arne R. Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. 1986, J. Bacteriol, 165:849-85
    60、Borbely, G., G. suranyi, A. Korez, and Z. Palfi. Effect of hert shock on protein systhesis in the cyanobbacterium synechococcus sp. Strain PCC 6301. J. Bacteriol, 1985,
    
     161:1 125-1130.
    61 . Lyons C. D Katz S. Mechenisms and Pathways of Aniline Elimination from Aquatic Enironments Appl. Envirom Microbiol, 1984,48: 491--469
    62. C. M. GRIEVE S. R. GRATTAN Rapid assay for determination of water souble quaternary ammonium compounds. Plant and soil, 1983,70:303-307
    63 . Linda Tombras, Jean-allain Pocard Osmotic Control of Glycine Betaine Biosynthesis and Degrardation in Rhizobium melliloti Journal of Bacteriology, 1988, 170(7) : 3142--3149
    64. Postma, P. W., H. G. Keizer ,and P. Koolwijk. Transport of trehalose in Salmonella typhimurium. J. Bacteriol, 1986, 168:1107-1111
    65 . D. W. Tempest and J. L. Meers. The influence of NaCl concentration of the medium on the potassium content of Aerobacter aerogenes and on the interreiationships between potassium, magnesium and ribonucieic acid in the growing bacteria, J. General Microbiol, 1968, 54:319-325.
    66. Landfald, B., and A. R. Strom. Choline-glycine betaine pathway confers a high level of osmtic tolerance in Escherichia coli. J. Bacteriol, 1986, 165:894-855.
    67. Le Rudulier, D., T. Bernard, and L. Bouillard. Glycine betaine, an osmtic effector in Klebsiella pneumoniae and other members of the Enterbacteriaceae. Appl. Environ. Microbiol, 1983,46: 152-159.
    68. Le Rudulier, D , A: R: Strom, A. M. Dandckar. L., T. Smith. And R. C. Valentine. Molecular biology of osmoregulation. Science, 224: 1064-1068.
    69 . Measures, J. C. Role of amino acids in osmoregulation of non-halophilic baxteria. Nature(London), 257:398-400
    70. Perroud, B , and D. Le Rudulier. Glycine betaine transport in
    
     Escherichia coli: osmotic modulation. J. Bacteriol, 1985, 161:393-401.
    71. Gowrishankar, J. Identification of osmoresponsive genes in Escherichia coli: evidence for participation of potassium and proline transport systems in osmoregulation. J. Bacteriol, 1985, 164:434-445.
    72, Yancey, P. H., M. E. Clark, S. C. Hand, R. D. Bowlus, G. N. Somero Living with water stress: evolution of osmolyte systems. Science, 217:1214-1222.
    73 . Shree Kumar Apte and Arvind A. Bhagwat. Salinity-Stress-induced proteins in two nitrogen-fixing anabaena strains differentially tolerant to salt. J. Bacteriol , 1989,171:909-915.
    74. Ciulla, R., Clougherrty, N. Belay, S. Krishan, C. zhoou, D. Byrd, M. F. Roberts. Halotolerance of Methanobacterium thermoautotrophicum . J. Bacteriol, 1994, 176:3177-3187.
    75. Styrvold, O. B., P. Falkenberg, B. Landfald, M. W. Eshoo, T. Bjornsen, A. R. Strom. selection, mapping, and characterization of osmoregulatoty mutants of Eschericha coli blocked in the choline-glycine betaine pathway. 1986, J. Bacteriol, 165:856-863
    76 . Sutherland, L., J. Cairney, et al. osmotic regulation of transcription: induction of the proU betaine transport gene is dependent on accumulation of intracellular potassium. J. Bacteriol, 1986, 168:805-814.
    77. F. T. Rohb, A. R. Place, K.R. Sowers, H. J. Schreier, S. DasSarma E. M. Fleischmann, Archaea a laboratory manual. 349-367
    78. Magdy A. Madkour et al Preferential osmolyte accumulation: a mechanism of osmotic stress adaptation in diazotrophic bacteria. Appl. Enviro Microbiol, 1990, 56:2876-2881.
    79. Kappes, R. M., B. Kempf, E. Bremer. Three transport systems for the osmoprotenctant glycine betaine operate in Bacillus subtilis: characterization of OpuD. J. Bacteriiol, 1996,
    
     178:5071-5079.
    80. Lai, M. C., and R. P. Gunsalus. Glycine betaine and potassium ion are the major compatible ssolutes in the extremely halophilic methanogen Methanohalophilus strain Z7302. J. Bacteriol, 1992, 174: 7474-7477.
    81. Lai, M. C., K.R.Sowers, D. E. Roberts, R. P. Gunsalus Distribution of compatible solutes in the halophilic methanogenic archabacteria. J. Bacteriol, 1995, 173:5352-5358.
    82. Mclaggen, D., J. Naprstek, and W. Epsteo. Interdependence of K~+ and glutamatic accumulation during osmotic adaptation of Escherichia coli. J. Biol. Chem, 1994, 269:1911-1917.
    83. Roberts, L. M. C. Lai, R. P. Gunsalus. Biosynthetic pathway of the osmolytes N-acetyl--lysine, glutamine, and betaine in Methanohalophilic stain FDF1 suggested by nuclear magnetic resonace analyses. J. Bacteriol, 1992, 174:6688-6693.
    84. Proctor, L. M. C. Lai, and R. P. Gunsalus. The methanogenic archacon Methanosarcina thermophila TM-1 possesses a high-affinity glycine betaine transporter involved in osmotic adaptation. Appl. Environ. Microbiol, 1997, 63:2252-2257.
    85. Robertson, D. E.,M. C. Lai, R. P. Gunssalus, and M. F. Roberts. Composition, variation, and dynamics of major somotic solutes in Methanohalophilus strain FDF1. Appl. Environ. Microbiol, 1992, 58:2438-2443.
    86. Robertson, P. M., and M. F. Roberts. Eddects of osmolyte precursors on the distribution of compatible solutes in Methanohalophillus portucalensis. Appl. Environ. Microbiol, 1997, 63:4032-4038.
    87. James L. Botsford. Osmoregulation in Rhizobium meliloti: inhibition of growth by salts. Archives of Microbiology. 1984, 137:124-127.
    87 . Csonksa LN. A third prolline permease in Salmonella typhimurium which functions in media of elevated osmotic strength. J Bacteriol. 1982, 151:1433-1443.
    
    
    89、Hua S-ST, Tsai VY, Lichens GM, Noma AT. Accumulation of amino acids in Rhizobium sp. Strain WR1001 in response to sodium chloride salinity. Appl. Enviro. Microbiol. 1982, 44:134-140.
    90、Koujima I, Hayashi H, Tomochika K, Okabe A, Kanemasa Y. Adaptational changes in proline and water content of Staphylococcus aureus after alteration of environemental salt concentration. Appl. Enviro. Microbiol, 1978, 35:467-470.
    91、Makenmson JC, Hastings JW. Glutamate functions in osmoregylation in marine bacterium. Appl. Enviro. Microbiol, 1979, 38: 178-180.
    92、Measure JC. Role of amino acids in osmoregulation of nonhalophilic bacteria. Nature, 1975, 257:398-400.
    93、Hanne M. Giaever, Olaf B. Styrvold, Inga Kaasen, Arne R. Strom. Biochemical and Genetic Characterization of osmoregulatory trehalose synthesis in Escherichia coli. 1988, J. Bacteriol, 170: 2841-2849
    94、An Li, Gu Guowei. The Treatment of Saline Wastewater Using a two-stage contact oxidation method. Wat. Sci. Tech, 1993, 28(7): 31~37
    95、Woolard C R. Biological Treatment of Hypersaline Wastewaters. DAI, 1993, 54-58: 2645~2833
    96、Stewart M S, Ludwing H F. Effects of Varying ssalinity on the extended aeration processes. Sewage and Industrial Wasters, 1962, 34(11):1161~1177
    97、Hamoda M F, Al atlar I M S. Effects of high sodium chloride concentration on activated sludge treatment. Wat. Sci. Tech., 1995, 31(9): 61~72
    98、闫敏,商连,朱俊黄.COD测定中消除氯离子干扰的方法.中国给水排水,1998,14:38~40
    99、于令弟,李绍英.含海水的废水COD的测定方法试验.环境科学,20—22
    100、王碱.化工辞典.北京:化学工业出版社,1979.580~585
    
    
    101、沈东升,周旭辉.废水生物处理中的毒物影响及其工程对策.中国沼气,2000,18 (1):3~7
    102、赵传芳,黄志龙,卿素华编著.有机污水的生物化学处理.成都:四川科学技术出版社,1986
    103、张雨山,王静,蒋立东,徐梅生,顾平,李方方.利用海水冲厕对城市污水处理的影响研究.中国给水排水,1999,15 (9):4~7
    104、张雨山,王静,蒋立东,徐梅生,顾平,李方方.海水盐度对二沉池污泥沉降性能的影响.中国给水排水,1999,15 (9):18~19
    105、冯叶成,占新民,文湘华,王建龙,孔惠,钱易.活性污泥处理系统耐含盐废水冲击负荷性能.环境科学,2000,21 (1):106~108
    106、童华宜.COD快速测定方法介绍.环境科学学报,1995,20 (9) 246—249

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700