用户名: 密码: 验证码:
玉米黄粉酶法制备高F值低聚肽的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高F值低聚肽具有高支低芳的特殊氨基酸构成,能够作为肝病患者、高付出病人和运动员的膳食补充发挥重要的生理功能。玉米湿法淀粉厂的副产物玉米黄粉支链氨基酸含量高,非常适宜于高F值低聚肽的制备。因此,本文以玉米黄粉为原料,研究了高F值低聚肽的酶法制备过程和技术路线。主要研究内容包括玉米黄粉蛋白的分离和增溶、蛋白酶的选择、酶解条件优化及过程控制、超滤及吸附条件的确立,并且对酶解产物进行相对分子质量分布范围和F值的分析鉴定,拟定了质量标准。主要研究结果如下:
     1、确定了以玉米黄粉为原料酶法制备高F值低聚肽的基本工艺路线,其关键在于玉米黄粉蛋白的预处理、玉米黄粉蛋白的酶解和高F值低聚肽的分离。
     2、玉米黄粉的预处理对酶法制备高F值低聚肽是必需的,工艺涉及三个方面:第一,黄粉的脱色。选择丙酮作溶剂,以浸提条件料液比1:3、30℃浸提4h,重复3次操作可基本除去玉米黄色素。第二,脱除淀粉。脱色黄粉与水1:1混合90℃糊化1h后以1.0%的α—淀粉酶在pH5.5、60℃反应至碘试验不变蓝,再加入2.0%糖化酶在pH4.8、45℃酶解8h后得到蛋白质含量为83.5%的玉米黄粉蛋白。第三,玉米黄粉蛋白的增溶。添加还原剂Na_2SO_3、碱性条件和升高温度可在不同程度上提高玉米黄粉蛋白的溶解度。本试验选择加入0.10%Na_2SO_3作还原剂,pH10.0,90℃处理15min的方法进行增溶可使玉米黄粉蛋白溶解度达到14.24%,可溶性氮指数NSI达到12.70%。
     3、单酶水解在酶解产物组分相对分子质量分布范围上无法达到预定要求,采用双酶水解法。2709碱性蛋白酶对玉米黄粉蛋白酶解作用最强,最佳工艺参数是:底物浓度5.0%,10.0%的酶用量,pH10.0,45℃,水解时间8h,其结果为DH达到了33.5%,产物中肽的含量为2.86g/100mL,氨基态氮含量为102.94mg/100mL,产物组分中相对分子质量分布范围为:5,000以上占21.5%,2,000~5,000占24.4%,200~2,000占51.9%,200以下仅占2.2%。利用木瓜蛋白酶进行二次酶解,最佳工艺参数是:2.0%的木瓜蛋白酶用量,pH7.0,60℃,水解时间为4h,产物中肽的含量为2.10g/100mL,氨基态氮含量为230.05mg/mL,产物组分相对分子质量分布范围为:5,000以上占10.6%,2,000~5,000占16.6%,200~2,000占67.1%,200以下占3.7%。
     4、高F值低聚肽的分离和脱苦研究表明:分离小分子肽方法选择截留相对分子质量为5,000的膜超滤,多肽和蛋白质被除去,流出液组分中相对分子质量分布范围为5,000以上占6.4%,2,000~5,000占12.2%,200~2,000占76.9%,200以下占4.5%,达到低聚肽含量要求。为提高F值,研究了以吸附剂脱除AAA的方法,选择粉末状活性
    
    碳作吸附剂,最佳工艺参数是:料液比13,pH3刀,20℃,吸附时间为3h,产物含氮量
    为 2.7g/L,F值为 22.59,产物组分中相对分子质量分布范围为:5,000以下的肽占94石%,
    2,000以下的低聚肽占70.5%,符合高F值低聚肽的质量要求。由本研究确立的酶法制
    备高F值低聚肽混合物工艺所获得的高F值低聚肽Mw为1厂90,Mn为920,得率以玉
    米黄粉蛋白计为 34.l%。
     5、根据初步研究,制定了以玉米黄粉为原料双酶法制备高F值低聚肽混合物的质
    量标准,分别从感官指标、理化指标和微生物指标三个方面规范产品质量,可作为生产
    中的质量控制参考。
     活性肽的酶法制备是生物技术蛋白质工程和酶工程的重要内容。本研究所制得的高
    F值低聚肽混合物,低聚肽含量高,相对分子质量小,能够作为特殊生理、病理及运动
    状态下人群的膳食营养供给。制备工艺各步骤的工艺参数和质量管理指标都已经基本确
    定,有必要进一步中试、生产和推广应用。
     (本论文共计图ZI个,表15个*
High Fischer ratio oligopeptides with a special amino acids composition of high branched chain amino acids (BCAA) and low aromatic amino acids (AAA) could play important physiologic functions on liver disease patients, high expend patients and athletes. CGM was a by-product in a wet corn starch plant, which was suitable for preparation of high Fischer ratio oligopeptides for its high branched chain amino acids content. It was utilized as raw material to prepare for high Fishcher ratio oligopeptides by enzyme methods. Protein of CGM isolating, protease and hydrolysis condition selecting, hydrolysis process controlling, ultrafiltration and adsorption condition selecting were studied in this dissertation. The relative molecular mass (Mr) range and Fischer ratio were studied, too. The main results indicated:
    1. The basic processing was affirmed. Key facets concerned pre-treat of CGM, hydrolysis of protein of CGM, isolating of high Fischer ratio oligopeptides.
    2. Pre-treating was necessary for high Fischer ratio oligopeptides preparation. It concerned with 3 facets. First, decolor of material. The parameters of the pigment extractin: adding acton into CGM in proper ratio of substance to solvent (1:3), extracting 4h at 30℃, repeating this operation 3 times were the economical, high qualitative way. Second, remove starch. Decolor CGM mixed with water at 1:1, cultured Ih at 90℃, then added 1.0% a-amylase at pH 5.5, 60℃, after it didn't change to blue in the iodine experiment, given 2.0% p-amylase to culture 8h at pH 4.8, 45℃, protein of CGM with 83.5% protein content was obtained. Third, increase the solubility of protein of CGM. Dealing with alkaline, rising temperature and adding reductant Na2SO3 were good way. Adding 0.10% Na2SO3, heating 15 minutes at pH10.0, 90℃ was applied to increasing solubility to 14.24%, the index of nitrogen solubility (NSI) to 12.70%.
    3. The Mr range of hydrolysates was far away from predetermined only treated by one protease. Two proteases were used in hydrolysis. 2709 alcalase had powerful enzymatic hydrolysis. Results indicated that the optimum parameters for 2709 alcalase were 5.0% substance, 10.0% enzyme to substance, pH10.0, 45℃ and 8h. In such condition, the degree of hydrolysis was 33.5%, peptides content was 2:86g/100mL, ammoniac nitrogen content was
    
    
    
    102.94mg/100mL, the Mr ranges of hydrolysates above 5,000, from 2000 to 5,000, from 200 to 2000 and below 200 were 21.5%, 24.4%, 51.9% and 2.2% respectively. The optimum parameters for the second enzymatic hydrolysis by papain indicated 2.0% papain to substance, pH 7.0, 60℃ and 4h. Peptides and ammoniac nitrogen were 2.1g/100mL, 230mg/100mL respectively, the Mr ranges above 5,000, from 2,000 to 5,000, from 200 to 2,000 and below 200 were 10.6%, 16.6%, 67.1%, 3.7% respectively.
    4. The research of high Fischer ratio oligopeptides isolating and debittering indicated: The Mr 5,000 withholded ultrafiltration was used to remove peptides and proteins. Mr ranges of hydrolysats passed through the membrane above 5,000, from 2,000 to 5,000, from 200 to 2,000 and below 200 were 6.4%, 12.2%, 76.9%, 4.5% respectively. It attained the demand of oligopeptides. In order to promote Fischer ratio, powdered activated carbon was studied as AAA adsorbent. The optimum parameters were adsorbent to the volume of hydrolysates 1:3, pH3.0, 20C and 3h. The product had 2.7g/L nitrogen content, Fischer ratio was 22.59, Mr ranges below 5,000 and below 2,000 were 94.6% and 70.5% respectively. The yield was 34.1% on protein of CGM by weight. The bitter weakened by the means of hiding bitter peptides in this research.
    5. The quantity standard was formulated according to the preliminary study on preparation of high Fischer ratio oligopeptides by two enzymes method from CGM. It could keep the quantity on sensory organ level, physical and chemical level and microorganism level in production controlling.
    Preparation high Fischer ratio oligopeptides by enzymatic hydrolysis belonged to protein engineering and enzyme engineering of biology techn
引文
[1]尤新.功能性发酵食品[M].北京:中国轻工业出版社,2000.201~228
    [2]沈蓓英.玉米蛋白深层次开发[J].粮食与油脂,1998,(3):39~40
    [3]郭振宇,吴贤汉.肽类常用的分析技术[J].海洋科学,1999,(2):28~31
    [4]甘纯玑,廖金坤,蔡乐铮.水相凝胶色谱法测定水解蛋白分子量及分子量分布[J].日用化学工业,1990,199(4):41~43
    [5]李波,罗心玲,甘纯玑.花粉提取液中蛋白质的分子质分布测定[J].日用化学工业,1988,308(6):28~30
    [6]倪莉,饶平凡,王璋.腐乳中生理活性多肽的分离和表征[J].浙江农业大学学报,1997,23(S):93~97
    [7]王梅,戴军,谷文英.高效凝胶过滤色谱法测定玉米黄粉蛋白酶解产物寡肽的分子量分布[J].食品与发酵工业,1998,24(5):25~27
    [8]唐传核,彭志英.大豆蛋白酶解物的苦肽以及脱除方法进展[J].中国油脂,2000,25(6):167~172
    [9]赵国华,陈宗道.蛋白质酶解物苦味研究进展[J].粮食与油脂,2000.(1):28~30
    [10]孔德新.脑活口服液的制备及营养成分分析[J].食品科学,1996,17(10):54~55
    [11]倪莉,王璋,许时婴,等.酶法水解丝素的研究[J].食品与发酵工业,2000,26(1):20~23,28
    [12]汪建斌,邓勇.Alcalase碱性蛋白酶对大豆分离蛋白水解作用的研究[J].食品工业科技,2002,23(1):61~62
    [13]晏向华,翟明仁,黎观红,等.动物营养中小肽的营养研究新进展[J].广东饲料,2000,(3):22~25
    [14]何慧,孙颉,谢笔钧.灵芝生物活性肽的分离及组成研究[J].食品科学,2001,22(5):56~57
    [15]吴建平,丁霄霖.大豆降压肽的研制(Ⅰ)—生产高活性ACEI肽酶系的筛选[J].中国油脂,1998,23(2):49~51
    [16]王梅,谷文英.反渗透技术浓缩寡肽水溶液[J].粮食与饲料工业,1999,(6):43~45
    [17]沈蓓英,孙冀平.高F值寡肽生理功能和制备[J].粮食与油脂,1999,(2):27~30
    [18]何慧,谢笔钧,杨卓,等.大豆蛋白和玉米蛋白酶解肽及其活性研究[J].粮油食品科技,2002,10(1):14~16
    [19]王遂,尤旭.微生物蛋白酶对玉米皮蛋白水解作用的研究[J].食品工业科技,2000,21(4):22~24
    
    
    [20]尤新.玉米深加工技术[M].北京:中国轻工业出版社,1999.208~219
    [21]吴建平,丁霄霖.大豆降压肽的研制(Ⅱ)—酶作用条件的优化[J].中国油脂,1998,22(3):6~8
    [22]刘大川,钟方旭.酶水解法制备大豆肽的研究[J].中国油脂,1997,22(6):14~16
    [23]王威,王春利,闫炳宗.天然食用玉米黄色素的研究[J].食品与发酵工业,1994,116(2):36~40
    [24]齐崴,何志敏,何丽霞.酪蛋白酶解制备酪蛋白磷酸肽研究[J].食品科学,2001,22(7):25~28
    [25]唐传核,杨晓泉,彭志英.乳蛋白酶解物中的苦肽研究[J].中国乳品工业,2001,29(1):8~12
    [26]钱方,邓岩,刘阳.胃蛋白酶水解大豆蛋白的研究[J].中国乳品工业,2001,29(3):10~13
    [27]何国谱,谷文英.控制酶解玉米黄粉蛋白制备富含“条件必需氨基酸”——谷氨酰胺(Gln)活性肽营养液的研究[J].中国粮油学报,2000,15(1):18~21
    [28]李远志,赖红华.玉米黄浆中蛋白的回收研究[J].食品与机械,21~22
    [29]郭鸰,于国平,杨永山,等.蛋白酶酶解物苦味的探讨[J].中国食品学报,2001,1(2):48~51
    [30]董晓慧.支链氨基酸营养作用与结构[J].饲料博览,1999,11(10):17~18
    [31]鲁晓翔,唐津忠.CGM中醇溶蛋白制备条件的优化[J].食品科学,1999,(7):33~35
    [32]赵新维,冯志彪.蛋白质酶解物水解度的测定[J].食品科学,1994,(1):65~66
    [33]翟瑞文,李雁群,陈子林.玉米渣中蛋白质的酶水解[J].食品工业科技,1997,(5):38~40
    [34]齐崴,何明霞,何志敏.胰蛋白酶水解全酪蛋白反应过程中的色谱分析[J].色谱,2002,20(1):1~5
    [35]黄文涛,胡学智.酶应用手册[M].上海:上海科学技术出版社,1989.178~187
    [36]徐虹,滕农,应汉杰.离子交换法提取L-苯丙氨酸的研究[J].离子交换与吸附,1999,15(1):81~85
    [37]张龙翔,张庭芬,李令媛.生化实验方法和技术[M].北京:人民教育出版社,1982.1984~163
    [38]蒋星,徐红娣.木瓜蛋白酶的活力测定[J].工业微生物,1989,(5):27~32
    [39]李理,罗泽民,卢向阳.梨形毛霉蛋白酶在大豆多肽制备中的应用[J].中国粮油学报,2001,16(1):55~58
    [40]郭玉蓉.含支链氨基酸饮料对高温环境下小鼠体能恢复的影响[J].甘肃农业大学学报,1998,(4):430~433
    [41]李书国,陈辉.大豆多肽的功能特性及加工工艺[J].粮油食品科技,2000,(1):14~15
    [42]胡明方.食品分析[M].重庆:西南师范大学出版社,1992.38~39
    [43]薛长勇,王伟琴,李溪雅,等.支链氨基酸对卧床、鼻饲病人蛋白质代谢的影响[J].营养学
    
    报,1995,17(3):313~317
    [44]张鑫奎,陆家齐,黎君友,等.胃大部切除术后不同浓度支链氨基酸液的应用[J].营养学报,1992,14(1):86~89
    [45]金宏,许志勤,王先远,等.支链氨基酸提高大鼠游泳耐力作用探讨[J].营养学报,2001,23(1):48~51
    [46]Shallo HE, Rao A, Ericson AP, et al. Preparation of soy protein concentrate by ultrafiltration[J].J Food Sci, 2001,66:242~246
    [47]Liceage-Gesualdo AM, Li-Chan ECY. Functional properties of fish protein hydrolysate from herring[J].J Food Sci, 1999,64:1000~1004
    [48]Hanada JS. Characterization and functional properties of rice bran proteins modified by commercial exoproteases and endoproteases[J].J Food Sci, 2000,65:305~310
    [49]Lopez-Bajonero JJ, Lara-Calderon P, Galvez-Mariscal A, et al. Enzymatic production of a pow-phenylalanine product from skim milk powder and caseinate[J]. J Food Sci, 1991,56:938~942
    [50]Clare DA, swaisgoodf HE. Bioactive milk peptides: prospectus [J]. J Dairy Sci, 2000,83:1187~1195
    [51]Soichi Arai, Akiko Maeda, Masahiko Matsumura, et al. Enlarged-scale production of a low-phenyla lanine peptide substance as a foodstuff for patients with phenylketonuria[J]. Agric Biol Chem, 1986,50:2929~2931
    [52]Akiko Maeda, keiko Abe, Michiko Watanabe, et al. Peptic hydrolysis of bovine β-Lactoglobulin to produce a low-phenylalanine peptide foodstuff for phenylketonuria[J]. Agric Biol Chem, 1987,51,1501~1507
    [53]Sandra H, Mojarro-Guerra, Benato Amado, et al.Isolation of low-molecular-weight taste peptides from vacherin mont d'or cheese[J].J Food Sci, 1991,56:943~947
    [54]Calderon De La Banca AM, Ruiz-Salazar RA, Jara-Marini ME. Enzymatic hydrolysis and synthesis of soy protein to improve its amino acid composition and functional properties[J]. J Food Sci, 2000,65:246~253
    [55]Michiko Yamashita, Soichi Aral, Masao Fujimaki. Low-phenylalanine, high-tyrosine plastein dietelic food[J]. J Food Sci, 1976,41:1029~1032
    [56]Susumiu M, Shinsuke M. Angiotensin I-coverting enzyme inhibitory activities of synthetic peptides related to the tandem repeated sequence of a maize endosperm protein[J]. Agric Biol Chem, 1989,53:1077~1281
    [57]Iwami K, Sakakibara K, Ibuki F.Involvement of post-digestion hydropholic peptides in
    
    plasma cholesterol-lowing effect of dietary plant proteins[J]. Agric Biol Chem, 1986,50:1217~1222
    [58]Ishibashi N. Bitterness of leucine-containing peptides[J]. Agric Biol Chem, 1987,51:2389~2394
    [59]Chang-Hyan, Kim, Kim Mi-ryung. The bitterness of the enzymatic hydrolysate of soybean protein and the amino acid composition of the UF filtrate[J]. Foods and Biotech, 1997,6:244~249
    [60]Barry CM. Debittering of a trptic digest of borine β-casein vsing porcine kidney general aminopeptidase and X-prolydipeptidyl aminopeptidase from lactococcus lactis cubsp. cremoris AM 2[J]. J Food Sci, 2000,65:1145~1150
    [61]Stevenson DE. Protease-catalyzed condensation of peptides as a potentia means to reduce the bitter taste of hydrophobic peptides found in protein hydrolysates[J]. Enzy Micro Tech, 1998,22:100~110
    [62]Newey H, Symth DH. Intracellular hydrolysis of dipeptides during intestinal absorption [J]. J physiol, 1960,152:367~380
    [63]Laha WJ, Braun SD. Enzymatic production of protein hydrolysates for food use[J]. Food Technol, 1994,48:68~71
    [64]Umetsu H. Debittering mechanism of bitter peptides from milk casein by wheat carboxypeptidase[J]. J Agric Food Chem, 1983,31:50~53
    [65]Cordie, CT Control of food allergies using protein hydrolysate[J]. Food Technol, 1994,48:72~76
    [66]Wdak WDZ, Zjajka S. Enzymatic hydrolysis of milk protein under alkline and acidic conditions[J]. J Food Sci, 1999,64:393~394
    [67]Hua-Ming Chen. Structural analysis of anti-oxidative peptides from soybean β conglycinin[J]. J Agric Food Chem, 1995,43:574~578
    [68]Adler-Nissen J. Determination of the degree of hydrolysis of food protein hydrolyzates by trinitrobenzene sulfonicacid[J]. J Agric Food Chem, 19(?)9,37:17~20
    [69]Conzalez P,Camacho F,Jurado E, et al. Enzymatic hydrolysis of whey proteins I.Kinetic mode[J]. Biotech Bioeng, 1994,44:523~528
    [70]Conzalez P, Camacho F, Jurado E, et al. Enzymatic hydrolysis of whey proteins Ⅱ. mokcular-weight range[J]. Biotech Bioeng,1994,44:529~532
    [71]David Marks M, et al. A structural model for maize zein proteins[J]. Argos P,Pedersen K, J Biol Chem, 1982,257:9984~9990
    
    
    [72]Neummann PE, Wall JS, Walker CE. Chemical and physical properties of proteins in wet-milled corn gluten[J]. Cereal Chem, 1984,61:353~356
    [73]Przybyla AE. Enzymes used for protein hydrolysate[J]. Food Engineering, 1989,61:51~52
    [74]Wilson CM A nomenclature for zein polypeptides based on isoelectric focusing and sodium. dodecyl sulfate polyacrylamide gel electrophoresis[J]. Cereal chem, 1985,62:361~365
    [75]Wallace JC, Lopes MA. New methods for extraction and quanitation of zeins reveal at a high content of γ-zein in modified opaque-2 maize[J]. Plant physiol, 1990,92:191~196
    [76]Eriksson LS,Wahren J. Branched-chain amino acids: What are they good for?[J]. Chin Nutr, 1982,1:127~129
    [77]Jet LL, Miller RH, Nagle FT, et al. Amino acid metabolism during exercise intrained rats: the potential role of carnitine in the metabolism of branched chain amino acid[J]. Metabolism, 1987,36:748~752
    [78]Carlich PJ, Gtant I. Amino acid infusion increases the sensitivity of muscle protein synthesis in vivo to insulin[J]. Biochem J, 1988,254:579~584
    [79]Messinger JK, Rupnow JH, Zeece MG, et al. Effect of partial proteohysis and succinglation on functionality of corn germ protein isolate [J]. J Food Sci, 1987,52:1620~1624
    [80]Herald TJ, Hachmeister KA, Huany S, et al. Corn zein packaging materials for cooked turkey[J]. J Food Sci, 1996,61:415~417
    [81]Chien JT, Hoff JE, Chen LF. Simultaneous dehydration of 95% thanol and extraction of crude oil from dried ground corn[J]. Cereal Chem, 1988,65:484~485
    [82]Hardwick JE, Glatz CE. Enzymatic hydrolysis of com gluten meal[J]. J Agric Food Chem, 1989,37:1188~1192
    [83]Hamada JS, Marshall WE. Preparation and fanctional properties of enzymatically deamidated soy proteins[J]. J Food Sci, 1989,54:598~601
    [84]Alfonso Clemente, Javier Vioque, Raul Sanchez-Vique, et al. Protein quality of chick pea(Cicer arietinum L.) protein hydrolysates[J]. Food Chem, 1999,67:269~274
    [85]Mullally MM, O Callagham DM, Fitz Gerald RJ, et al. Zymogen activation in pancreatic endoproteolytic preparations and influence on some whey protein hydrolysate characteristics[J]. J Food Sci, 1995,60:227~233
    [86]Smyth M, Fitz Gerald RJ. Characterisation of a new chromatography matrix for peptide
    
    molecular mass determination[J]. International Dairy J, 1997,7:571~577
    [87]Slattery H, Fitz Gerald RJ. Functional properties and bitterness of sodium caseinate hydrolysates prepared with a Bacillus proteinase[J]. J Food Sci, 1998,63:418~422
    [88]Turgeon SL, Gautier, SF, Paquin P.Emulsifying properties of whey peptide fractions as a function of pH and ionic strengh[J]. J Food Sci, 1992,57:601~604
    [89]Mahmoud MI, Malone WT, Cordle CT. Enzymatic hydrolysis of casein: Effect of degree of hydrolysis on antigenicity and physical properties[J]. J Food Sci, 1992,57:1223~1229
    [90]Chobert JM, Betrand C, Nicolas MG. Solubility and emulsifying properties of casein and whey protein modified enzymatically by trypsin[J]. J Agric Food chem, 1988.36:883~892
    [91]Casella MLA, Whitaker J. Enzymatically and chemically modified zein for improvement of functional properties[J]. J Food Biochem, 1990,14:453~475
    [92]Quaglia GB, Orban E. Influence of enzymatic hydrolysis on structure and emulsifying properties of sardine protein hydrolysates[J]. J Food Sci, 1990,55:1571~1573,1619
    [93]Yamamoto Y, Muramatsu K.Self-selection of dietary branched-chain amino acids by rats[J]. Agric Biol Chem, 1987,51:1023~1031

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700