用户名: 密码: 验证码:
SO_2胁迫对15种园林绿化树种生理生化指标的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验以15种栽培常见的园林绿化树种作为研究对象,在人工熏气室内对其二年生截枝分别进行不同SO2浓度和不同时间熏气处理,测定了在SO2熏气处理下各树种叶片中叶绿素含量(Chl)、细胞汁液pH值、细胞膜相对透性(PMP)、丙二醛(MDA)、游离脯氨酸(Pro)、可溶性糖(SS)和可溶性蛋白(SP)的动态变化,运用相关分析、主成分分析、聚类分析等数学方法对不同树种主要的抗性指标进行了综合评价,系统论述了各树种对SO2的反应特性,进一步探讨了SO2对树木的伤害机理。主要实验结果如下:
     1.采用不同浓度SO2熏气对15种常见栽培园林绿化树种叶片进行各种生理生化指标的测定,结果表明:大部分树种在SO2胁迫下其叶片生理生化指标都呈现有规律的变化,叶绿素含量在胁迫第一天都有较显著的下降,随胁迫时间的延后稍有回升,叶绿素a/b值、游离脯氨酸含量则有上升有下降,质膜相对透性、可溶性糖含量、可溶性蛋白含量和丙二醛含量总体呈上升趋势,而细胞汁液pH值则下降。这说明大部分树种应对SO2胁迫都产生了相同的生理响应,而少部分树种则可能有它应对胁迫独特的生理调节功能。
     2.通过叶绿素含量与其它各项指标的相关回归分析表明:大部分树种生理生化指标与叶绿素的相关性并不高,虽然大部分树种的生理生化指标变化都有一定的规律,但是其变化的幅度并不一致,各指标的变化未呈现对应性。在SO2胁迫后,叶片叶绿素总量与脯氨酸含量和可溶性蛋白都呈正相关的是山桃;与丙二醛呈正相关的树种是紫叶小檗;与可溶性糖含量呈极显著正相关的树种是栾树。
     3.运用主成分分析法对不同树种的生理生化指标进行综合评判表明:各个树种在抗SO2机制中构成因素很多,应根据抗性指标的变化综合考量。各个树种对SO2胁迫的适应性不同,所起主导作用的生理因素也不相同,评判一个树种抗SO2的能力应综合考虑各种生理生化指标的变化,并找出起主导作用的评价指标。SO2胁迫下连翘、榆叶梅、牡丹、栓翅卫矛的叶绿素含量与相对含水量因素得分最高,元宝枫的叶绿素a/b和质膜相对透性因素得分最高,紫丁香、小叶黄杨的丙二醛因素得分最高,栾树细胞汁液pH值与核酸因素得分最高,悬铃木、长叶白蜡的可溶性蛋白因素得分最高,山桃、华北珍珠梅的可溶性糖因素得分最高。
     4.采用主成分法将SO2胁迫下不同树种的综合因素得分从大到小进行排序,其结果为:榆叶梅﹥栾树﹥连翘﹥紫丁香﹥牡丹﹥元宝枫﹥悬铃木﹥栓翅卫矛﹥华北珍珠梅﹥山桃﹥长叶白蜡﹥小叶黄杨。
     5.采用聚类分析方法对12个树种进行分类,结果显示:山桃、栓翅卫矛、连翘、悬铃木、小叶黄杨、紫丁香,榆叶梅和华北珍珠梅为一类,牡丹、长叶白蜡和元宝枫为一类,栾树为一类。一类树种在具有某些共同特征的同时,也存在许多指标变动较大的现象,这说明各树种在每一指标上的差别是比较大的,仅靠单一指标将各树种对SO2抗性的强弱进行分类是片面的,必须综合考虑较多的因素才能使评价结果更加准确。
Sulfur dioxide is one of the primary pollutant in urban environments, it usually leads to the afforestation plant changes in morphology, structure and physiological metabolism. Two-year-old cutted branches of fifteen ornamental tree species were fumigated by sulfur dioxide at different concentrations level and with different treatments time. The purpose is to test the dynamic changes of chlorophyll(Chl) a, b, t contents, pH of the cellular juice, plasma membrane permeability(PMP) and malondialdhyde(MDA), proline(Pro), soluble sugar(SS), soluble protein(SP) contents in the leaves, and to evaluate the main resistive indexes of tree varieties comprehensively by mathematical methods such as correlation analysis, cluster analysis and principal component analysis. Then systematic discussed each tree specie, reaction to sulfur dioxide and further explored the injury mechanisms of sulfur dioxide. The main results are as follows:
     1. Physiological and biochemical indexes of 15 kinds of common cultural ornamental tree leaves which fumigated with different SO2 concentrations were determined in this experiment. The results showed that: the physiological and biochemical indexes in leaves of most species all showed a regulated change. Chlorophyll content of most species had a significant descend at first day, and then ascended along with the prolongation of stress time and the increase of the SO2 concentration; the Chla/b and Pro content also went up and down; PMP, SS, SP and MDA content were increased in general, but the cellular juice pH was reduced. It revealed that most species had the same physiological response, while a small number of species may has its unique physical conditioning under SO2 stress.
     2. By studying the correlation regression analysis between chlorophyll content and each other index, the results showed that: physiological and biochemical indices of most species had a low correlation with chlorophyll content, Although the changes of physiological and biochemical indices of most species had certain laws, the range was inconsistency, and the changes of each index were not shown correspondence. After SO2 treatment, it was Amygdalus davidiana which was positive with chlorophyll content and Pro, SS, and Berberis thunbergii‘Atropurpurea’with chlorophyll and MDA, and Koelreuteria paniculata which had significant positive with SS.
     3. By comprehensive evaluation the physiological and biochemical indices of different tree species with principal component analysis, the results showed that There were many factors that had effects on the SO2 resistant mechanism, so it should be had a comprehensive evaluation based on the changes of resistant indices. Different tree species had different adaptability, and the magistral physiological factors were also not the same. So it should be comprehensively considered the changes of each physiological and biochemical index, and found out the evaluation index of magistral factors.The Chl content and relative water content of Amygdalus triloba, Forsythia suspensa, Paeonia suffruticosa, Euonymus phellomanus had the highest score under SO2 stress, and the chla/b, PMP of Acer truncatum, the MDA content of Syringa oblata, Buxus microphylla, the celluar juice pH and nucleic acid of Koelreuteria paniculata, the SP content of Platanus orientalis, Fraxinus pennsylvanica var. lanceolata and the SS content score of Amygdalus davidiana, Sorbaria kirilowii also had the highest score.
     4. Principal component analysis was used to comprehensive evaluation of the resistance of twelve ornamental tree species under SO2 stress. The sulfur dioxide resistance of the twelve tree species from strong to weak is as the followings: Amygdalus triloba﹥Koelreuteria paniculata﹥Forsythia suspensa﹥Syringa oblata﹥Paeonia suffruticosa﹥Acer truncatum﹥Platanus orientalis﹥Euonymus phellomanus﹥Sorbaria kirilowii﹥Amygdalus davidiana﹥Fraxinus pennsylvanica var. lanceolata﹥Buxus microphylla.
     5. Twelve species was classified by cluster analysis, the results showed that Amygdalus triloba, Sorbaria kirilowii, Amygdalus davidiana, Forsythia suspensa, Syringa oblata, Platanus orientalis, Euonymus phellomanus and Buxus microphylla were the same category; Paeonia suffruticosa, Fraxinus pennsylvanica var. lanceolata and Acer truncatum were a category and Koelreuteria paniculata was another. Every similar species had a certain common characteristics, while there was also a phenomenon that many indices had a larger change. This showed that each species had a large difference on one index, so it was unilateral to sort the SO2 resistant of each tree species only according to one single index, it must be considered more factors to make the results more accurate.
引文
[1]刘燕云,曹洪法,舒俭民等.五种农作物对SO2的剂量反应及其急性伤害阈值[J].中国环境学,1989,9(3):183~190
    [2]孔国辉.大气污染与植物.中国林业出版社,1988
    [3]陈树元,徐和宝,史建文等.应用与环境生物学报,1997,(3):199~203
    [4]高叙平,曹洪法,舒剑民.105种植物对模拟酸雨的反应[J].中国环境科学,1987,7(2):16~20
    [5]马广大.大气污染控制工程[M].第二版,中国环境科学出版社,2004,6
    [6]刘艳菊,丁辉.植物对大气污染的反应与城市绿化[J].植物学通报2001,18(5):577~586
    [7]郑淑颖,二氧化硫污染对植物影响的研究进展[J].生态科学,2000,19(1):59~64
    [8]张玲玲,李彦慧,杨建民.4种园林苗木对汽车尾气适应性能力的研究[J].河北农业大学学报,2006,29(5):17~51
    [9]樊后保,臧润国, W.Kosuke.女贞种子和幼苗对模拟酸雨的反应[J].林业科学,2000,36(6):89~94
    [10]丛者福.SO2污染空气影响下树木叶片叶绿素含量的动态变化[J].新疆农业大学学报,1998,(40):297~300
    [11]卞咏梅,陈树元.二氧化硫对植物细胞膜透性的影响[J].环境科学,1981,6(5):41~45
    [12] F.X.Kong, W.Hu, S.Y.Chao, et.al.Physiological responses of the lichen Xanthoparmelia mexicana to oxidative stress of SO2[J].Environmental And Experimental Botany, 1999, (42): 201~209
    [13]蒋放,田德林.苹果树长期接触低浓度SO2对生长的影响[J].环境科学,1988,10(5):35~38
    [14]俞子文,谭常,杨惠东等.植物对二氧化硫的反应和抗性研究Ⅵ二氧化硫伤害类脂过氧化物的增生[J].植物生理学报,1981,7(1):57~63
    [15]钱永常.大豆对SO2的适应性反应[J].植物生理学报,1991(3):232~238
    [16] QIAN Yong-Chang, YU Shu-Wen.Change of Proteins in Glycine max Fumigated with SO2[J].Acta Phytophysiologica Sinica, 1990, 16(1): 81~85
    [17]毕玉蓉,张承烈.模拟酸雨对芽豆叶片的伤害和Mefluidide保护效应的研究[J].环境科学学报,1993,13(3):379~384
    [18]曹洪法.我国大气污染及其对植物的影响[J].生态学报,1990,10(1):7~12
    [19]陈锐章.植物抗污机理研究.Ⅰ叶细胞的pH值、等电点、缓冲容量与抗二氧化硫的关系[J].植物生理学通讯,1981,(1):50~53
    [20]高吉喜,潘风云,周兴宝.SO2对植物新陈代谢的影响—对光合、呼吸与物质代谢的影响[J].环境科学研究,1997,10(6):5~9
    [21]韩素梅,张晓何,刘荣坤.植物叶片脯氨酸的变化及其对亚硫酸伤害的防护作用[J].植物生态学报,1996,20(4):379~384
    [22]韩阳,王秋雨,韩光燮.植物叶片SOD活性分析及植物抗性等级的划分[J].辽宁大学学报,1995,22(2):71~74
    [23]林植芳,李双顺.衰老叶片的叶绿体中H2O2的积累与膜脂过氧化的关系[J].植物生理学报,1988,14(4):16~22
    [24]彭长连,林植芳,林桂珠等.旅游和工业化对亚热带森林地区大气环境质量及两种木本植物叶绿素荧光特性的影响[J].植物学报,1998,14(3):270~276
    [25]苏行,胡迪琴,林植芳等.广州市大气污染对两种绿化植物叶绿素荧光特性的影响[J].植物生态学报,2002,26(5):599~604
    [26]高绪评.氯气对植物呼吸作用的影响[J].植物生理学通讯,1982,(2):12~14
    [27]买永杉等.农业环境学[M].中国农业出版社,1994
    [28] Bennett, J. H. & Hill, A. C.Interactions of air pollutants with canopies of vegetation [M].Academic Press, New York. Responses of Plants to Air Pollution, 1975, 9: 122~132
    [29] R. N. Muller, J. E. Miller, D. G. Sprugel. Photosynthetic Response of Field-Grown Soybeans to Fumigations with Sulphur Dioxide[J].The Journal of Applied Ecology, 1979, 16(2): 567~576
    [30]陈维新主编.农业环境保护[M].北京:农业出版社,1993
    [31]孔国辉,陆耀东,刘世忠等.大气污染对38种木本植物的伤害特征[J].热带亚热带植物学报,2003,11(4):319~328
    [32]曹洪法, O.C泰勒.SO2剂量与植物急性伤害关系[J].生态学报,1986,6(2):114~118
    [33] Ziminerman, P.W. Susceptibility of plant to HF and SO2 contrib[J].Boyce Thompson Inst, 1956, 18: 263~273
    [34] Dreisinger.B.R., P.C.McGovern.Monitoring atmospheric Sulfur dioxide and correlating its effects on crops and forests in the Sudbury area[Z].In proceedings of the conference on the impact of air Pollution on Vegetation, Toronto: 1970, 23~28
    [35]鲁敏,李英杰.部分园林植物对大气污染物吸收净化能力的研究[J].山东建筑工程学院学报, 2002,17(2):45~49
    [36]彭长连,温达志,孙梓健.城市绿化植物对大气污染的响应[J].热带亚热带植物学报,2002,10(4): 321~327
    [37] Jita P, Braha B P.A comparisom of biochemical respomses to oxidative and metal stress in seedlings of barley[J].Hordeum Vulgare L Environ Poll, 1988, 101: 99~105
    [38]曹洪法,刘厚田,舒俭民等.植物对SO2的反应[J].环境科学,1988,6(6):59~66
    [39]余叔文.二氧化硫对植物的伤害和植物对二氧化硫的抗性[J].植物生理学通讯,1983,3:7~14
    [40]陈小勇,宋永昌.实验室和野外条件下SO2对蚕豆叶片抗氧化的影响[J].植物资源与环境,1993,2(1):45~48
    [41]王宝山.生物自由基与植物膜伤害[J].植物生理学通讯,1988,2:12~16
    [42]李耶波.植物会遭受汽车污染的伤害吗?[J].环境科学情报,1983,3:49~54
    [43]曹洪法,刘夯田等.植物对SO2污染的反应[J].环境科学,1985,6(6):59~66
    [44] Samuel B M, et al.Effects of SO2 and O3 on allocation of 14C-labeled photosynthesis in phaseolus wlgaris[J].phant physiol, 1983, 73: 530~635
    [45] Sonja veljovic-Jovanvic, et al.Inhibition of photosynthesis, acidification and sitmulation of Zeaxanthix formation in leavese by sulfur dioxide and these effects[J].Planta, 1993, 191: 365~376
    [46]汪玉秀,常君成,王新爱等.大气中化学污染物对植物危害作用机制的探究[J].陕西林业科技,2001,4:57~61
    [47]孙建伟,朱友林.二氧化硫对植物的影响及植物的自我修复[J].江西植保,2004,27(2):64~67
    [48]舒俭民,刘连贵,高映新等.低浓度SO2对小麦生长的影响[J].农业环境保护,1988,7(3):16~18
    [49]刘荣坤,李世承.二氧化硫对蓖麻叶质膜透性、叶绿素含量和花粉生长的影响[J].中国环境科学,1989,3(2):39~45
    [50]中科院上海植物生理研究所环境生理组.植物对二氧化硫的反应和抗性研究[J].植物生理学报,2003,11(4):319~328
    [51]周军英,戴珍科,武志林等. SO2和NO2复合污染对番茄超氧化物歧化酶及叶片的影响[J].中国环境科学,1993,13(6):429~432
    [52] Hsiao TC.Plant respomses to water stress[J].Plant Physiol, 1973, 24: 519~570
    [53] Morgan J M.Osmo regulation and water stress in highe plants[J].Ann Rer Plant Physiol, 1984, (1): 299~319
    [54] Subbzrao, G V, Chauhan Y S, Johanen C.Patterns of osmotic adjustment in pigeonpea importance as a mechanism of drought resistance[J].European Journal of Agronomy, 2000, 12(3-4): 239~249
    [55]曲东,王保莉,王沛洪等.渗透胁迫下磷对玉米叶片有机渗调物质的影响[J].干旱地区农业研究,1996,14(2):72~77
    [56]王霞,候平,尹林克等.水分胁迫对柽柳组织含水量和膜透性的影响[J].干旱区研究,1999,16(2):6~11
    [57]沈黎明,王舰.水分胁迫、盐胁迫和热激对林生山黧豆体内游离氨基酸含量的影响[J].中国农业大学学报,1996,1(1):23~26
    [58]王锁民等.渗透调节在碱茅属幼苗适应盐逆境中的作用初探[J].草业学报,1993,2(3):40~46
    [59]郝延令,贾秀峰.二氧化硫大气污染对北方常见树木叶片中可溶性糖含量的影响[J].植物物理学通讯,1986,1(22)
    [60] Sachs M.Ho T H D. Alteration of fene expression during environmental stress in plants[J].Planta, 1994, 94: 346~352
    [61] Matters G L, Scandalios J G.Synthesis of isozymes of superoxide dismutase in maize leaves in response to O3, SO2 and elevated O2[J].J Exp Bot, 1987, 38: 842~852
    [62] Metraux.JP, Streit L, Staub T.A pathogenesis-related protein in cucumber is a chitinase[J].Physiol Mol Plant Pathol, 1988, 33: 1~9
    [63] Queiroz O.Effects of air pollutants at the transcriptional.translational and post-translational levels [J].Programme Abstracts and Into Symp Air Pollut Plant Metabolism, 1987
    [64]何若辒.草莓在寒冷驯化中游离脯氨酸含量的变化与耐冷性的发育[M].植物耐寒性及防寒技术.北京:学术书刊出版社,1989,169~175
    [65] Black V J, M.M.unstorth et al. Effects of gaseous air pollution in agriculture and horticulture[R].Butter Worth Scientific, 1982, 67~86
    [66]李寒娥,李秉滔,蓝盛芳.城市交通环境对行道树时片表皮结构影响的研究[J].环境科学与技术,2003,26(2):1~3
    [67]温达志,旷远文,刘世忠等.大气污染对珠江三角洲村边植被的影响[J].热带亚热带植物学报,2003,11(4):386~392
    [68]刘艳菊等.植物对大气污染的反应与城市绿化[J].植物学通报,2001,18(5):577~586
    [69]刘世忠,薛克娜,孔国辉等.大气污染对35种园林植物生长的影响[J].热带亚热带植物学报,2003,11(4):329~335
    [70]刘耘.重金属粉尘污染大气对绿色植物的影响[J].大气环境,1990,5(4):2~5
    [71]贺克斌.总悬浮微粒中的沥青成分在植物中的累积[J].环境科学,1995,16(6):63~65
    [72]蒋高明.植物硫含量法监测大气污染数量模型[J].中国环境科学,1995,15(3):208~214
    [73]李嘉钰,殷长寿.绿化植物对臭氧的反应和相对抗性[J].林业科技通讯,1983,(9):22~24
    [74]李嘉钰.复合污染条件下树木对硫、氟吸收能力的初步分析[J].林业科技通讯,1983,(7):16~20
    [75]许皖菁,颜贻明,吴方正.桑叶表面氟化物吸附积累规律的统计研究[J].环境污染与防治,1998,20(3):19~21
    [76]魏卓立,曹威,张驰.甲醛缓冲溶液吸收—盐酸副玫瑰苯胺分光光度法测定二氧化硫有关问题探讨[J].环境保护科学,2003,29(04):32~33
    [77]李得孝,郭月霞,员海燕等.玉米叶片叶绿素含量测定方法研究[J].中国农学通报,2005,21(06):153~155
    [78] Dhindsa SR and Matowe W. Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation [J].Journal of Experimental Botany, 1981, (32): 79~91
    [79]赵可夫.植物抗盐生理[M].北京:中国科学技术出版社,1993.
    [80]胡羡聪,张德强,孔国辉等.大气SO2氟化物对植物生理生态指标的影响[J].热带亚热带植物学报,2003,11(4):372~378
    [81]欧毅,谢永红,王进等.温度和PEG胁迫对甜柿叶片游离脯氨酸累积的影响[J].西南农业学报,2006,19(03):470~472
    [82] Abassi NA, Kushad MM, Endress AG. Active oxygen-scavenging enzymes activities in developing apple flowers and fruits[J].Scientia Horticulturae, 1998, (74): 183~184
    [83] Dalton DA, Hanus FJ, Russell SA, Evans HJ. Purification, properties and distribution of ascorbate peroxidase in legume root nodules[J].Plant Physiol, 1987, (83): 789~794
    [84]张志良.植物生理学实验指导(第二版)[M].北京:高等教育出版社,1990,175~185
    [85]余叔文,刘愚,李振国等.植物对SO2的抗性与叶组织pH的相关性[J].科学通报,1980,25(23):43~44
    [86]蒋明义,郭绍川.水分亏缺诱导的氧化胁迫和植物的抗氧化作用[J].植物生理学通讯,1996,32(2):144~150
    [87]林海明,张文霖.主成分分析与因素分析的异同和SPSS软件——兼与刘玉玫、卢纹岱等同志商榷[J].统计研究,2005,(3):65~69
    [88]张文霖.主成分分析在SPSS中的操作应用[J].市场研究,2005,(12):32~35
    [89]刘二明,彭绍裘等.水稻品种对稻瘟病抗性聚类分析[J].中国农业科学,1994,27(3):44~49
    [90]严重玲,钟章成,李瑞智.酸雨对农作物叶片活力、叶绿素及叶汁pH的影响[J].环保科技,1995,17(2):27~30
    [91]张潤花,郭世荣,李娟.盐胁迫对黄瓜根系活力、叶绿素含量的影响[J].长江蔬菜,2006,(2):47~49
    [92] Long S P, Baker N R, Raines C A. Analyzing the response of photosynthetic CO2 assimilation to long-term elevation of atmospheric CO2 concentration[J].Vegetatio,1993, 104/105: 33~45
    [93]刘振亚,刘贞琦.作物光合作用的遗传及其在育种中的应用研究进展[A].作物育种研究与进展(第1集)[C].北京:农业出版社,1993,168~183
    [94]黄清风,陈煜辉.广州地区酸雨污染变化[J].广州环境科学,1999,14(2):19~22
    [95]龚明,丁念诚,贺子义等.盐胁迫下大麦和小麦叶片膜脂过氧化伤害与超微结构变化的关系[J].植物学报,1989,31(11):841~846
    [96]李世承等.大气污染与植物脱镁叶绿素a的关系[J].辽宁大学学报,1986(4):58
    [97]阎秀峰,李晶,祖元刚.干旱胁迫对红松幼苗保护酶活性及脂质过氧化作用的影响[J].生态学报,1999,19(6):850~859
    [98]吴宗庆,徐献元,李屹.树种抗毒烟毒气一般规律的初步研究[J].林业科技通讯,1975,(7):18~20
    [99]杨玉珍.植物受氟化物污染后糖代谢及叶汁pH值得变化研究.河南农业大学学报,1995,29(3):95~97
    [100]高吉喜等.SO2和酸雨对大豆的单一及复合效应[J].应用与环境生物学报,1998,4(2):132~135
    [101] Petrusalm, Winicoll. Proline status in salt tolerant and salt sensitive alfalfacellllines and plants in response to NaCl [J].Plant Physiol Biochem, 1997, 35: 303~310
    [102] Haro R, Baneulosma, Quintero FJ et al. Genetic basis of sodium exclusion and sodium tolerance in yeast[J].Physiol Plant, 1993, 89: 868~874
    [103] Gorham J., Hughes L.Y. and Wynjones R.G. Low molecularweight carbohydrates in some salt stressed plants [J].Physiol Plant, 1981, 53: 27~33
    [104]姜卫兵等.无花果耐盐性生理指标的探讨[J].江苏农业科学,1991,7(3):29~33
    [105]李妮亚,高俊凤.水分胁迫对抗旱性不同的冬小麦幼芽蛋白质的影响[J].干旱地区农业研究,1997,15(1):85~90
    [106]张建国.中国北方主要造林树种耐旱特性及其机理的研究[D].北京林业大学,1993
    [107]杨敏生,裴保华,张树常.树木抗旱性研究进展[J].河北林果研究,1997,12(1):87~93

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700