用户名: 密码: 验证码:
奎宁为荧光指示剂的多孔塑料光纤传感探头的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全文共分为3章:
    第一章为文献综述。在文献调研基础上,作者先从光谱法、传感层和多孔塑料光纤传感探头的优势三个方面总结了光纤化学传感器的发展现状及其本课题的选题依据。然后,从实验室常规检测方法和化学传感技术两方面总结了各种血清中氯离子的测定方法和葡萄酒中游离二氧化硫的测定方法,侧重点在于化学传感技术尤其是光化学传感器的研究和发展状况。
    第二章为方法原理。介绍了本论文所涉及的荧光熄灭理论和多孔塑料光纤传感探头的基本原理。对探头制备的工艺流程和探头制备过程中参与聚合的各组分的类型与用量、聚合温度和纯化密封程度等参数对探头的影响也作了详细描述。
    第三章为多孔塑料光纤传感探头的研制及应用研究。在第三章中,针对当前传感器探头存在的指示剂容易泄漏问题提出了利用具有或引入可共聚基团的荧光指示剂与单体交联聚合制备传感探头的新方法,并把多孔塑料传感探头应用于实际样品的测定,结果令人满意。本章分为三节。第一节为卤素多孔塑料光纤传感探头的研究。应用荧光指示剂硫酸奎宁的双键与单体甲基丙烯酸甲酯交联共聚制备卤素荧光传感探头。研究其响应机理并应用于卤素离子的检测。实验结果发现在pH=1.3时传感探头荧光稳定,对卤素离子响应良好。碘离子的线性范围为5.0×10-4~1.3×10-2 mol/L,检测限2.2×10-4mol/L;溴离子的线性范围为8.0×10-4~1.5×10-2 mol/L,检测限5.2×10-4mol/L;氯离子的线性范围为1.5×10-2~8.0×10-2mol/L,检测限1.2×10-2mol/L。把探头应用于血清中氯离子的检测,与传统的氯离子选择电极测定结果比较,令人满意。第二节为二氧化硫多孔塑料光纤传感探头的研究。应用荧光指示剂奎宁与单体苯乙烯交联共聚制备二氧化硫荧光传感探头,研究其响应机理并应用于二氧化硫的检测。在pH=1.3时传感探头荧光稳定,对二氧化硫响应良好,线性范围为5.0×10-5~7.1×10-4 mol/L,检测限2.2×10-5mol/L。把探头应用于葡萄酒中游离二氧化硫的检测,与国家标准直接碘量法测定结果比较,令人满意。第三节为展望。阐述了目前多孔塑料光纤中存在的主要问题及其解决的可能途径。
This dissertation consists of the following three chapters.
    Chapter 1 is a literature review. It summarizes the development of optical fiber chemical sensors and the basis of this dissertation from spectral method, probe and porous plastic optical fiber probe's advantages. It also summarizes the measuring methods to date for chloride determination in serum and for free SO2 determination in wine from both regular lab determination and chemical sensing technology, and emphasis is put on chemical sensing technology especially the research and development of fiber-optical chemical sensors.
    Chapter 2 is about theories and methods. It is an introduction to the theory of dynamic fluorescence quenching and the basis principle of porous plastic optical fiber probe. A detailed description is made in the process flow of probes and the influence on probes of parameters in the fabrication of probes. These parameters included types and quantities of every component in the polymerization, the temperature of polymerization and the degree of purification and airproof, etc.
    Chapter 3 is the development and applications of porous plastic optical fiber probes. In order to resolve the current problem that sensing probe indicator is easily leakable, the thesis proposes a new fabrication method for porous plastic optical fiber probes using the copolymerization of fluorescence indicator and monomer. A small segment of this porous plastic fiber has been applied to the determination of real sample with satisfactory results. This chapter consists of three sections. The first section is studies on halides-ion porous plastic optical fiber probe. A new porous plastic optical halides-ion fiber was developed through the copolymerization of fluorescence indicator quinine sulphate and monomer methyl methacrylate. Its response mechanism was studied and applied to the determination of halides-ion.
    
    Under the condition that the pH value was 1.3, the optical fiber's fluorescence remains constant and has a good response to halides-ion. The calibrated graphs for iodide was obtained in the range from 5.0×10-4 to 1.3×10-2 mol/L, from 8.0×10-4 to 1.5×10-2 mol/L for bromide and from 1.5×10-2 to 8.0×10-2 mol/L for chloride and their respective detection limits were 2.2× 10-4 mol/L for iodide, 5.2×10-4mol/L for bromide, and 1.2×10-2mol/L for chloride. Using the probe to determine the amounts of chloride ion in serum, the results were in good agreement with the results obtained from the traditional chloride ion-selective electrode method. The second section is studies on sulfur dioxide porous plastic optical fiber probe. Sulfur dioxide fiber was developed through the copolymerization of fluorescence indicator quinine and monomer styrene. Its response mechanism was studied and applied to the determination of SO2. Under the condition that the pH value was 1.3, the optical fiber's fluorescence remains constant and has a good response to sulfur dioxide. A good linearity in a wide concentration range of sulfur dioxide, 5.0×10-5~7.1×10-4 mol/L, was displayed. Its detection limit was 2.2×10-5mol/L. Using the probe to determine the amounts of free sulfur dioxide in wine, the results were in good agreement with the results obtained by the state standard direct iodometric method. The third section outlines some exist of problems in the studies of porous plastic optical fiber probes and comes up with their possible solutions.
引文
1. W.R.Seitz.Anal.Chem. 1984, 56(1):16A-24A.
    2. T E Edmonds.Chemical sensors.USA: Chapman and Hall, New York, 1988.
    3. O.S.Wolfbeis.Pure & Appl.Chem. 1987,59(5):663-672.
    4. T.Hirschfeld, J.B.Callis, B.R.Kowalski.Science,1984, 226:312-318.
    5. Li W, Chen J.Anal.Chim.Acta,1996,331:103-109.
    6. Peterson JI. , Galdstein S R., Fitzgerald R V.Anal. Chem., 1980, 52(6):864-869.
    7. 章竹君,马望百.分析实验室,1991,10(5):59-65.
    8. 章竹君,李建中.分析实验室,1991,10(1):61-67.
    9. 王柯敏.光化学传感器理论与方法.湖南:湖南教育出版社,1995.
    10. Xie Z H, Guo L Q, Zheng X H, et al., Anal. Sci., 2001, V17 (Suppl.):a151-a153.
    11. Guo L Q, Nie Q Y, Xie Z H, et al.Chem. Res. Chinese. U., 2002, 18(1):8-11.
    12. 谢增鸿,郭良洽,吴伟钦,等.福州大学学报(自然科学版)增刊,1999,27:188-189.
    13. 郭祖奉,谢增鸿,林旭聪,等.第七届全国发光分析和动力学分析会议,广东,2002:103-107.
    14. 吕海霞,谢增鸿,郭良洽,等.第七届全国发光分析和动力学分析会议,广东,2002:107-109.
    15. 郑向华.基于交联共聚技术的多孔塑料光纤传感探头的研究:[硕士学位论文].福建:福州大学化学化工学院,2001.
    16. 崔福生.医学生化检验手册.天津:天津科学出版社,1982.
    17. Dubsky J.V., Trtilek.J.Mikrochemie, 1933, 12:325.
    18. Schales O., Schales S.S.J.Biol.Chem, 1941, 140:879-884.
    19. Ray E. Humphrey, Willie L. Hinze.Anal. Chem., 1973, 45(9): 1747-1749.
    20. J.E.Barney II, R.J.Bertolacini.Anal.Chem., 1957,29(8):1187-1188.
    21. Toshihir Ono, Junichi, et al.Clin.Chem. 1988, 34:552-553.
    22. 陈刚,吕邦泰.现代实用医学,2002,14(2):91-92.
    23. Y.Junko, H.Koji, et al.Bunseki Kagaku,1989,38,T26.
    
    
    24. J.Uwe.Laborpraxis,1990,14:126.
    25. Yu B S, Po C, Nie L H, Yao S Z.Anal.Lett., 1996, 29(1):43-57.
    26. Elo H.Hansen, Jaromir Ruzicka.Anal.Chim.Acta, 1976,87:353-363.
    27. Jacobus F. van Staden.Talanta,1991,38(9):1033-1039.
    28. Tsikas D, Fauler J, Frolich J C.Chromatographic, 1992, 33:317-320.
    29. Arai K, Kusu F, Noguchi N, et al.Anal.Biochem. 1996, 240:109-113.
    30. Dahams H., Clin.Chem. 1967,13:437.
    31. Dahams H., Rock R., Serigson D.Clin.Chem. 1968, 14:859.
    32. Pungor E., Toth K.Anal.Chim.Acta, 1969, 47:291.
    33. K. Hartman, S. Luterotti, H. F. Osswald, et al.Mikrochimica Acta,1978,II:235-246.
    34. Syotaro Oka, Yaichiro Sibazaki, Shu Tahara.Anal.Chem.,1981,53:588-593.
    35. Susie S.S. Tan, Peter C. Hauser, Kemin Wang, et al.Anal.Chim.Acta, 1991,255:35-44.
    36. In Jun Yoon, Jae Ho Shin, Insook Rhee Paeng.Anal.Chim.Acta,1998,367:175-181.
    37. Stokes G G.J. Chem. Soc., 1869, 22:174-185.
    38. Otto S. Wolfbeis, Edmund Urbano.Anal. Chem., 1983, 55:1904-1906.
    39. Edmund Urbano, Helmut Offenbacher, Otto S. Wolfbeis.Anal Chem., 1984, 56(3):427-429.
    40. R. Krapf, C.A. Berry, A.S. Verkman.Biophys.J, 1988, 53:955.
    41. S. Kar, M.A. Arnold.Talanta, 1995, 42(4):663-670.
    42. A. Martin, R. Narayanaswamy.Sensors and Actuators B, 1997, 38-39:330-333.
    43. Geddes C D, Douglas P.Appl. Polym. Sci., 2000, 76:603-615.
    44. Geddes C D.Dyes and Pigments, 2000, 45:243-251.
    45. Geddes C D.Journal of Photochemistry and Photobiology A: Chemistry, 2000, 137:145-153.
    46. Geddes C D, Apperson K, Karolin J.Dyes Pigments, 2001,48:227-231.
    47. Geddes C D.Measurement Science and Technology, 2001, 12, R53-R88.
    48. Geddes C D.Sensors and Actuators B, 2001, 72, 188-195.
    49. E.Wang, M.E. Meyerhoff.Anal.Chim.Acta, 1993,283:427.
    50. Christian Huber, Tobias Werner, Christian Krause, et al.Anal.Chim.Acta. 1998, 364:143-151.
    51. Christian Huber, Tobias Werner, Christian Krause, et al.Anal. Chim. Acta. 1999, 398:137-143.
    
    
    52. Christian Huber, Ingo Klimant, Christian Krause, et al.Anal Chem., 2001, 73:2097-2103.
    53. GB/T 15038-1994.
    54. GB/T 5009.34-1996.
    55. West P W, Gaeke G C.Anal.Chem,1956,28(12):1816-1819.
    56. 朱化雨,彭安顺,张援.分析试验室,1992,11(1):60-61.
    57. Gong G Q, Xia H, Wang H G.Anal.Lett, 1995, 28(5):909-915.
    58. Balasubrmanian N, Kumar B S M.Analyst,1991,116(2):207-211.
    59. Kumar B S M, Balasubramanian N.J.AOAC International, 1992, 75(6):1006
    60. Marques E.P, Franco+ D W.Analyst, 1990, 116(6):795-796.
    61. Fogg A G , Wang X, Tyson J F.Analyst,1990,115(3):305-307.
    62. Zhi Z, Rios A, Valcarcel M.Analyst, 1995, 120(7):2013-2018.
    63. Decnop-Weever L G, Kraak J C.Anal.Chim.Acta, 1997, 337: 125-131.
    64. Ruiz E, Santillana M I, et al.J.Liq.Chromatogr, 1994, 17:447.
    65. Michigami Y, Morooka M.J.Chromatogr.A, 1996, 732(2):403-407.
    66. Rethmeier J, Rabenstein A, Langer M, FischerU.J.Chromatogr.,1997,760:295-302.
    67. Meiner F X, Jaeschke W A.Int.J.Environ.Anal.Chem., 1981,10:51-67.
    68. Stuff J, Jacshke W A. Naturforschung B, 1978, 33B:293.
    69. Yamada M, Nakada T, Suzuki S.Anal.Chim.Acta, 1983, 147:401-404.
    70. Al-Tamrah S A, Townshend A, Wheatley A R.Analyst, 1987, 112:883-886.
    71. Burguera J L, Burguera M.Anal.Chim.Acta, 1988, 214:429-432.
    72. Kato M, Yamada M, Suzuki S.Anal.Chem., 1984, 56:2529.
    73. Paulls D A, Townshend A.Analyst, 1995, 120:467.
    74. Jin-Ming Lin, Toshiyuki Hobo.Anal.Chim.Acta., 1996, 323:69-74.
    75. Huang Y L, Kim J M, Schmid R D.Anal.Chim.Acta, 1992, 266:317-323.
    76. Sasaki S, Arikawa Y, Shimomura M, et al.Anal.Commun,1997,34:299.
    77. He Z K, Wu F W, Meng H, et al.Anal.Sci.,1998,14:737.
    78. Meng H, Wu F W, He Z K, et al.Talanta, 1999, 48:571-577.
    79. Wu F W, He Z K, Meng H, Yuan L J, et al.F.J.Anal.Chem.,1998,362:566-570.
    80. Wu F W, He Z K, Meng H, Zeng Y E.Analyst,1998,123:2109-2112.
    81. He Z K, Wu F W, Meng H, Yuan L J, et al.Anal.Lett.,1999,32(2):401-410.
    
    
    82. Granados M, Maspoch S., Blanco M.Anal.Chim.Acta, 1986,179:445-451.
    83. Ibrahim I, Cemal Y, Humeyra B.Analyst, 1996, 121:1873.
    84. Ekkad N, Huber C O.Anal.Chim.Acta, 1996, 332:155-160.
    85. Regina Keil, Rudiger Hampp, Hubert Ziegler.Anal.Chem, 1989, 61:1755-1758.
    86. M Teresa Gomes, Teresa A.Rocha, Armando C. Duarte, et al.Anal.Chem.1996, 68:1561-1564.
    87. Kuban P, Karlberg B.Talanta, 1998, 45:477-484.
    88. I.Sarudi, J.Kelemen.Talanta,1998,45(6):1281-1284.
    89. Xu Y J, Lu C Y, Chen K, et al.Talanta,1996,43(8):1297-1303.
    90. Yang J H, Yang P H, Meng G Y.Sens.Actuators,1996,31B(3):209-212.
    91. Xiangfang Xie, Ziad Shakhsher, Ahmad A. Suleiman, et al.Talanta, 1994, 41(2):317-321.
    92. 张志琪,章竹君.化学学报,1987,45:497-499.
    93. Ashutosh Sharma, Otto S.Wolfbeis.Spectrochimica Acta, 1987, 43A(11):1417-1421.
    94. Otto S.Wolfbeis, Ashutosh Sharma.Anal.Chim. Acta, 1988, 208:53-58.
    95. 曾恚恚,王柯敏,秦臻,等.高等学校化学学报,1993,14(2):180-183.
    96. Norris A.R.Can. J. Chem., 1967, 45:175-180.
    97. 朱元保,王柯敏,徐远金,等.高等学校化学学报,1993,14(4):476-479.
    98. 许汉英,王柯敏,王大宁,等.高等学校化学学报,1998,19(9):1401-1404.
    99. Taha M.A. Razek, Michael J. Miller, Saad S. M. Hassan, et al.Talanta,1999,50:491-498.
    100. Dmitri Papkovsky, Marsha A. Uskova, Gelii V. Ponomarev, et al.Anal.Chim.Acta, 1998,374:1-9.
    101. Sheu H.R., EI-Aasser M.S., Vanderhoff J W.J.Polym.Sci. Part A: Polym.Chem.1990, 28: 653-667.
    102. K.A.Kun, R.Kunin.J.Polymer Sci.A-1,1968,6:2689-2701.
    103. 何炳林,化学通报,1973,2:19.
    104. 刘永勋,徐和德,王瑞香,等.离子交换与吸附,1995,11(3):279-282.
    105. 刘永勋,徐和德,王瑞香,等.离子交换与吸附,1995,11(4):373-376.
    106. 刘志强,刘凤歧,杨锋,等.高等学校化学学报,1995,16(12):1968-1971.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700